bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Visual Illusions: Their Causes Characteristics and Applications by Luckiesh Matthew

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 537 lines and 62333 words, and 11 pages

A description of the eye by no means suffices to clarify the visual process. Even the descriptions of various phenomena in the preceding chapter accomplish little more than to acquaint the reader with the operation of a mechanism, although they suggest the trend of the explanations of many illusions. At best only monocular vision has been treated, and it does not exist normally for human beings. A person capable only of monocular vision would be like Cyclops Polyphemus. We might have two eyes, or even, like Argus, possess a hundred eyes and still not experience the wonderful advantages of binocular vision, for each eye might see independently. The phenomena of binocular vision are far less physical than those of monocular vision. They are much more obscure, illusory, and perplexing because they are more complexly interwoven with or allied to psychological phenomena.

The sense of sight differs considerably from the other senses. The sense of touch requires solid contact ; taste involves liquid contact; smell, gaseous contact; and hearing depends upon a relay of vibrations from an object through another medium , resulting finally in contact. However, we perceive things at a distance through vibration conveyed by a subtle, intangible, universal medium which is unrecognizable excepting as a hypothetically necessary bearer of light-waves or, more generally, radiant energy.

As we go up the scale of vertebrate animals we find that there is a gradual change of the position of the eyes from the sides to the front of the head and a change of the inclination of the optical axes of the two eyes from 180 degrees to parallel. There is also evident a gradual increase in the fineness of the bacillary layer of the retina from the margins toward the center, and, therefore, an increasing accuracy in the perception of form. This finally results in a highly organized central spot or fovea which is possessed only by man and the higher monkeys. Proceeding up the scale we also find an increasing ability to converge the optic axes on a near point so that the images of the point may coincide with the central spots of both retinas. These changes and others are closely associated with each other and especially with the development of the higher faculties of the mind.

Binocular vision in man and in the higher animals is the last result of the gradual improvement of the most refined sense-organ, adapting it to meet the requirements of highly complex organisms. It cannot exist in some animals, such as birds and fishes, because they cannot converge their two optical axes upon a near point. When a chicken wishes to look intently at an object it turns its head and looks with one eye. Such an animal sees with two eyes independently and possibly moves them independently. The normal position of the axes of human eyes is convergent or parallel but it is possible to diverge the axes. In fact, with practice it is possible to diverge the axes sufficiently to look at a point near the back of the head, although, of course, we do not see the point.

The movement of the eyes is rather complex. When they move together to one side or the other or up and down in a vertical plane there is no rotation of the optical axes; that is, no torsion. When the visual plane is elevated and the eyes move to the right they rotate to the right; when they move to the left they rotate to the left. When the visual plane is depressed and the eyes move to the right they rotate to the left; when they move to the left they rotate to the right. Through experience we unconsciously evaluate the muscular stresses, efforts, and movements accompanying the motion of the eyes and thereby interpret much through visual perception in regard to such aspects of the external world as size, shape, and distance of objects. Even this brief glimpse of the principal movements of the eyes indicates a complexity which suggests the intricacy of the explanations of certain visual phenomena.

At this point it appears advantageous to set down the principal modes by which we perceive the third dimension of space and of objects and other aspects of the external world. They are as follows: extent; clearness of brightness and color as affected by distance; interference of near objects with those more distant; elevation of objects; variation of light and shade on objects; cast shadows; perspective; variation of the visor angle in proportion to distance; muscular effort attending accommodation of the eye; stereoscopic vision; muscular effort attending convergence of the axes of the eyes. It will be recognized that only the last two are necessarily concerned with binocular vision. These varieties of experiences may be combined in almost an infinite variety of proportions.

Wundt in his attempt to explain visual perception considered chiefly three factors: the retinal image of the eye at rest; the influence of the movements of one eye; and, the additional data furnished by the two eyes functioning together. There are three fields of vision corresponding to the foregoing. These are the retinal field of vision, the monocular field, and the binocular field. The retinal field of vision is that of an eye at rest as compared with the monocular field, which is all that can be seen with one eye in its entire range of movement and therefore of experience. The retinal field has no clearly defined boundaries because it finally fades at its indefinite periphery into a region where sensation ceases.

After noting after-images, motes floating in the field of view and various other things, it is evident that what we call the field of view is the external projection into space of retinal states. All the variations of the latter, such as images and shadows which are produced in the external field of one eye, are faithfully reproduced in the external field of the other eye. This sense of an external visual field is ineradicable. Even when the eyes are closed the external field is still there; the imagination or intellect projects it outward. Objects at different distances cannot be seen distinctly at the same time but by interpreting the eye-movements as the point of sight is run backward and forward the intellect practically automatically appraises the size, form, and distance of each object. Obviously, experience is a prominent factor. The perception of the third dimension, depth or relative distance, whether in a single object or a group of objects, is the result of the successive combination of the different parts of two dissimilar images of the object or group.

As already stated, the perception of distance, size, and form is based partly upon monocular and partly upon binocular vision, and the simple elements upon which judgments of these are based are light, shade, color, intensity, and direction. Although the interpretation of muscular adjustments plays a prominent part in the formation of judgments, the influences of mathematical perspective, light, shade, color, and intensity are more direct. Judgments based upon focal adjustment are fairly accurate at distances from five inches to several yards. Those founded upon axial adjustment are less in error than the preceding ones. They are reliable to a distance of about 1000 feet. Judgments involving mathematical perspective are of relatively great accuracy without limits. Those arrived at by interpreting aerial perspective are merely estimates liable to large errors, the accuracy depending largely upon experience with local conditions.

The measuring power of the eye is more liable to error when the distances or the objects compared lie in different directions. A special case is the comparison of a vertical distance with a horizontal one. It is not uncommon to estimate a vertical distance as much as 25 per cent greater than an actually equal horizontal distance. In general, estimates of direction and distance are comparatively inaccurate when only one eye is used although a one-eyed person acquires unusual ability through a keener experience whetted by necessity. A vertical line drawn perpendicular to a horizontal one is likely to appear bent when viewed with one eye. Its apparent inclination is variable but has been found to vary from one to three degrees. Monocular vision is likely to cause straight lines to appear crooked, although the "crookedness" may seem to be more or less unstable.

The error in the estimate of size is in reality an error in the estimation of distance except in those cases where the estimate is based directly upon a comparison with an object of supposedly known size. An amusing incident is told of an old negro who was hunting for squirrels. He shot several times at what he supposed to be a squirrel upon a tree-trunk and his failure to make a kill was beginning to weaken his rather ample opinion of his skill as a marksman. A complete shattering of his faith in his skill was only escaped by the discovery that the "squirrel" was a louse upon his eyebrow. Similarly, a gnat in the air might appear to be an airplane under certain favorable circumstances. It is interesting to note that the estimated size of the disk of the sun or moon varies from the size of a saucer to that of the end of a barrel, although a pine tree at the horizon-line may be estimated as 25 feet across despite the fact that it may be entirely included in the disk of the sun setting behind it.

Double images play an important part in the comparison of distances of objects. The "doubling" of objects is only equal to the interocular distance. Suppose two horizontal wires or clotheslines about fifty feet away and one a few feet beyond the other. On looking at these no double images are visible and it is difficult or even impossible to see which is the nearer when the points of attachment of the ends are screened from view. However, if the head is turned to one side and downward so that the interocular line is now at right angles to the horizontal lines, the relative distances of the latter are brought out distinctly. Double images become visible in the latter case.

According to Br?cke's theory the eyes are continuously in motion and the observer by alternately increasing or decreasing the convergence of the axes of the eyes, combines successively the different parts of the two scenes as seen by the two eyes and by running the point of sight back and forth by trial obtains a distinct perception of binocular perspective or relief or depth of space. It may be assumed that experience has made the observer proficient in this appraisal which he arrives at almost unconsciously, although it may be just as easy to accept Wheatstone's explanation. In fact, some experiences with the stereoscope appear to support the latter theory.

Wheatstone discovered that the dissimilar pictures of an object or scene, when united by means of optical systems, produce a visual effect similar to that produced by the actual solid object or scene provided the dissimilarity is the same as that between two retinal images of the solid object or scene. This is the principle upon which the familiar stereoscope is founded. Wheatstone formulated a theory which may be briefly stated as follows: In viewing a solid object or a scene two slightly dissimilar retinal images are formed in the two eyes respectively, but the mind completely fuses them into one "mental" image. When this mental fusion of the two really dissimilar retinal images is complete in this way, it is obvious that there cannot exist a mathematical coincidence. The result is a perception of depth of space, of solidity, of relief. In fact the third dimension is perceived. A stereoscope accomplishes this in essentially the same manner, for two pictures, taken from two different positions respectively corresponding to the positions of the eyes, are combined by means of optical systems into one image.

Lack of correct size and position of the individual elements of stereoscopic pictures are easily detected on combining them. That is, their dissimilarity must exactly correspond to that between two views of an object or scene from the positions of the two eyes respectively . This fact has been made use of in detecting counterfeit notes. If two notes made from the same plate are viewed in a stereoscope and the identical figures are combined, the combination is perfect and the plane of the combined images is perfectly flat. If the notes are not made from the same plate but one of them is counterfeit, slight variations in the latter are unavoidable. Such variations will show themselves in a wavy surface.

The unwillingness of the visual sense to combine the two retinal images, if they are dissimilar to the extent of belonging to two different objects, is emphasized by means of colors. For example, if a green glass is placed over one eye and a red glass over the other, the colors are not mixed by the visual sense. The addition of these two colors results normally in yellow, with little or no suggestion of the components--red and green. But in the foregoing case the visual field does not appear of a uniform yellow. It appears alternately red and green, as though the colors were rivaling each other for complete mastery. In fact, this phenomenon has been termed "retinal rivalry."

The lenses of the stereoscope supplement eye-lenses and project on the retina two perfect images of a near object, although the eyes are looking at a distant object and are therefore not accommodated for the near one . The lenses enlarge the images similar to the action of a perspective glass. This completes the illusion of an object or of a scene. There is a remarkable distinctness of the perception of depth of space and therefore a wonderful resemblance to the actual object or scene. It is interesting to note the effect of taking the two original photographs from distances separated by several feet. The effect is apparently to magnify depth. It is noteworthy that two pictures taken from an airplane at points fifty feet or so apart, when combined in the stereoscope, so magnify the depth that certain enemy-works can be more advantageously detected than from ordinary photographs.

Stereoscopic images such as represented in Fig. 2 may be combined without the aid of the stereoscope if the optical axes of the eye can be sufficiently converged or diverged. Such images or pictures are usually upon a card and are intended to be combined beyond the plane of the card, for it is in this position that the object or scene can be perceived in natural perspective, of natural size, of natural form, and at natural distance. But in combining them the eyes are looking at a distant object and the axes are parallel or nearly so. Therefore, the eyes are focally adjusted for a distant object but the light comes from a very near object--the pictures on the card. Myopic eyes do not experience this difficulty and it appears that normal vision may be trained to overcome it. Normal eyes are aided by using slightly convex lenses. Such glasses supplement the lenses of the eye, making possible a clear vision of a near object while the eyes are really looking far away or, in other words, making possible a clear image of a near object upon the retina of the unadjusted eye. Stereoscopic pictures are usually so mounted that "identical points" on the two pictures are farther apart than the interocular distance and therefore the two images cannot be combined when the optical axes of the eyes are parallel or nearly so, which is the condition when looking at a distant object. In such a case the two pictures must be brought closer together.

In Figs. 2 and 3 are found "dissimilar" drawings of the correct dissimilarity of stereoscopic pictures. It is interesting and instructive to practice combining these with the unaided eyes. If Fig. 2 is held at an arm's length and the eyes are focused upon a point several inches distant, the axes will be sufficiently converged so that the two images are superposed. It may help to focus the eyes upon the tip of a finger until the stereoscopic images are combined. In this case of converging axes the final combined result will be the appearance of a hollow tube or of a shell of a truncated cone, apparently possessing the third dimension and being perceived as apparently smaller than the actual pictures in the background at arm's length. If the two stereoscopic pictures are combined by looking at a point far beyond the actual position of Fig. 2, the combined effect is a solid truncated cone but perceived as of about the same size and at about the same distance from the eye as the actual diagrams. In the latter case the smaller end of the apparent solid appears to be nearer than the larger end, but in the former case the reverse is true, that is, the smaller end appears to be at a greater distance. The same experiments may be performed for Fig. 3 with similar results excepting that this appears to be a shell under the same circumstances that Fig. 2 appears to be a solid and vice versa. A few patient trials should be rewarded by success, and if so the reader can gain much more understanding from the actual experiences than from description.

The foregoing discussion of vision should indicate the complexity of the visual and mental activities involved in the discrimination, association, and interpretation of the data obtained through the eye. The psychology of visual perception is still a much controverted domain but it is believed that the glimpses of the process of vision which have been afforded are sufficient to enable the reader to understand many illusions and at least to appreciate more fully those whose explanations remain in doubt. Certainly these glimpses and a knowledge of the information which visual perception actually supplies to us at any moment should convince us that the visual sense has acquired an incomparable facility for interpreting the objective world for us. Clearness of vision is confined to a small area about the point of sight, and it rapidly diminishes away from this point, images becoming dim and double. We sweep this point of sight backward and forward and over an extensive field of view, gathering all the distinct impressions into one mental image. In doing this the unconscious interpretation of the muscular activity attending accommodation and convergence of the eyes aids in giving to this mental picture the appearance of depth by establishing relative distances of various objects. Certainly the acquired facility is remarkable.

SOME TYPES OF GEOMETRICAL ILLUSIONS

No simple classification of illusions is ample or satisfactory, for there are many factors interwoven. For this reason no claims are made for the various divisions of the subject represented by and in these chapters excepting that of convenience. Obviously, some divisions are necessary in order that the variegated subject may be presentable. The classification used appears to be logical but very evidently it cannot be perfectly so when the "logic" is not wholly available, owing to the disagreement found among the explanations offered by psychologists. It may be argued that the "geometrical" type of illusion should include many illusions which are discussed in other chapters. Indeed, this is perhaps true. However, it appears to suit the present purpose to introduce this phase of this book by a group of illusions which involve plane geometrical figures. If some of the latter appear in other chapters, it is because they seem to border upon or to include other factors beyond those apparently involved in the simple geometrical type. The presentation which follows begins with a few representative geometrical illusions of various types.

The explanation accepted by some is that more effort is required to raise the eyes, or point of sight, through a certain vertical distance than through an equal horizontal distance. Perhaps we unconsciously appraise effort of this sort in terms of distance, but is it not logical to inquire why we have not through experience learned to sense the difference between the relation of effort to horizontal distance and that of effort to vertical distance through which the point of sight is moved? We are doing this continuously, so why do we not learn to distinguish; furthermore, we have overcome other great obstacles in developing our visual sense. In this complex field of physiological psychology questions are not only annoying, but often disruptive.

In Fig. 9 the three squares are equal in dimensions but the different characters of the divisions cause them to appear not only unequal, but no longer squares. In Fig. 10 the distance between the outside edges of the three circles arranged horizontally appears greater than the empty space between the upper circle and the left-hand circle of the group.

Fig. 16 might be considered to be an illusion of contour, but the length of the top horizontal line of the lower figure being apparently less than that of the top line of the upper figure is due largely to contrasting the two figures. Incidentally, it is difficult to believe that the maximum horizontal width of the lower figure is as great as the maximum height of the figure. At this point it is of interest to refer to other contrast illusions such as Figs. 20, 57, and 59.

In Fig. 19 the circle nearer the apex of the angle appears larger than the other. This has been presented as one reason why the sun and moon appear larger at the horizon than when at higher altitudes. This explanation must be based upon the assumption that we interpret the "vault" of the sky to meet at the horizon in a manner somewhat similar to the angle but it is difficult to imagine such an angle made by the vault of the sky and the earth's horizon. If there were one in reality, it would not be seen in profile.

If two angles of equal size are bounded by small and large angles respectively, the apex in each case being common to the inner and two bounding angles, the effect of contrast is very apparent, as seen in Fig. 20. In Fig. 57 are found examples of effects of lines contrasted as to length.

The reader may readily construct an extensive variety of illusions of contrast; in fact, contrast plays a part in most geometrical-optical illusions. The contrasts may be between existing lines, areas, etc., or the imagination may supply some of them.

The influence of perspective is particularly apparent in Fig. 24, where natural perspective lines are drawn to suggest a scene. The square columns are of the same size but the further one, for example, being apparently the most distant and of the same physical dimensions, actually appears much larger. Here is a case where experience, allowing for a diminution of size with increasing distance, actually causes the column on the right to appear larger than it really is. The artist will find this illusion even more striking if he draws three human figures of the same size but similarly disposed in respect to perspective lines. Apparently converging lines influence these equal figures in proportion as they suggest perspective.

Although they are not necessarily illusions of perspective, Figs. 25 and 26 are presented here because they involve similar influences. In Fig. 25 the hollow square is superposed upon groups of oblique lines so arranged as to apparently distort the square. In Fig. 26 distortions of the circumference of a circle are obtained in a similar manner.

The foregoing are a few geometrical illusions of representative types. These are not all the types of illusions by any means and they are only a few of an almost numberless host. These have been presented in a brief classification in order that the reader might not be overwhelmed by the apparent chaos. Various special and miscellaneous geometrical illusions are presented in later chapters.

EQUIVOCAL FIGURES

Many figures apparently change in appearance owing to fluctuations in attention and in associations. A human profile in intaglio may appear as a bas-relief. Crease a card in the middle to form an angle and hold it at an arm's length. When viewed with one eye it can be made to appear open in one way or the other; that is, the angle may be made to appear pointing toward the observer or away from him. The more distant part of an object may be made to appear nearer than the remaining part. Plane diagrams may seem to be solids. Deception of this character is quite easy if the light-source and other extraneous factors are concealed from the observer. It is very interesting to study these fluctuating figures and to note the various extraneous data which lead us to judge correctly. Furthermore, it becomes obvious that often we see what we expect to see. For example, we more commonly encounter relief than intaglio; therefore, we are likely to think that we are looking at the former.

Proper consideration of the position of the dominant light-source and of the shadows will usually provide the data for a correct conclusion. However, habit and probability are factors whose influence is difficult to overcome. Our perception is strongly associated with accustomed ways of seeing objects and when the object is once suggested it grasps our mind completely in its stereotyped form. Stairs, glasses, rings, cubes, and intaglios are among the objects commonly used to illustrate this type of illusion. In connection with this type, it is well to realize how tenaciously we cling to our perception of the real shapes of objects. For example, a cube thrown into the air in such a manner that it presents many aspects toward us is throughout its course a cube.

Another example is shown in Fig. 28. This may appear to be white circles upon a black background or a black mesh upon a white background. However, the more striking phenomenon is the change in the grouping of the circles as attention fluctuates. We may be conscious of hollow diamonds of circles, one inside the other, and then suddenly the pattern may change to groups of diamonds consisting of four circles each. Perhaps we may be momentarily conscious of individual circles; then the pattern may change to a hexagonal one, each "hexagon" consisting of seven circles--six surrounding a central one. The pattern also changes into parallel strings of circles, triangles, etc.

The crossed lines in Fig. 29 can be seen as right angles in perspective with two different spatial arrangements of one or both lines. In fact there is quite a tendency to see such crossed lines as right angles in perspective. The two groups on the right represent a simplified Z?llner's illusion . The reader may find it interesting to spend some time viewing these figures and in exercising his ability to fluctuate his attention. In fact, he must call upon his imagination in these cases. Sometimes the changes are rapid and easy to bring about. At other moments he will encounter an aggravating stubbornness. Occasionally there may appear a conflict of two appearances simultaneously in the same figure. The latter may be observed occasionally in Fig. 30. Eye-movements are brought forward by some to aid in explaining the changes.

In Fig. 30 a reversal of the aspect of the individual cubes or of their perspective is very apparent. At rare moments the effect of perspective may be completely vanquished and the figure be made to appear as a plane crossed by strings of white diamonds and zigzag black strips.

The illusion of the bent card or partially open book is seen in Fig. 31. The tetrahedron in Fig. 32 may appear either as erect on its base or as leaning backward with its base seen from underneath.

The series of rings in Fig. 33 may be imagined to form a tube such as a sheet-metal pipe with its axis lying in either of two directions. Sometimes by closing one eye the two changes in this type of illusion are more readily brought about. It is also interesting to close and open each eye alternately, at the same time trying to note just where the attention is fixed.

In Fig. 35 is a similar example. First one part will appear solid and the other an empty corner, then suddenly both are reversed. However, it is striking to note one half changes while the other remains unchanged, thus producing momentarily a rather peculiar figure consisting of two solids, for example, attached by necessarily warped surfaces.

Perhaps the reader has often witnessed the striking illusion of some portraits which were made of subjects looking directly at the camera or painter. Regardless of the position of the observer the eyes of the portrait appear to be directed toward him. In fact, as the observer moves, the eyes in the picture follow him so relentlessly as to provoke even a feeling of uncanniness. This fact is accounted for by the absence of a third dimension, for a sculptured model of a head does not exhibit this feature. Perspective plays a part in some manner, but no attempt toward explanation will be made.

In Fig. 36 are two sketches of a face. One appears to be looking at the observer, but the other does not. If the reader will cover the lower parts of the two figures, leaving only the two pairs of eyes showing, both pairs will eventually appear to be looking at the observer. Perhaps the reader will be conscious of mental effort and the lapse of a few moments before the eyes on the left are made to appear to be looking directly at him. Although it is not claimed that this illusion is caused by the same conditions as those immediately preceding, it involves attention. At least, it is fluctuating in appearance and therefore is equivocal. It is interesting to note the influence of the other features . The perspective of these is a powerful influence in "directing" the eyes of the sketch.

In explanation of the illusory phenomena pertaining to such geometrical figures as are discussed in the foregoing paragraphs, chiefly two different kinds of hypotheses have been offered. They are respectively psychological and physiological, although there is more or less of a mixture of the two in most attempts toward explanation. The psychological hypotheses introduce such factors as attention, imagination, judgment, and will. Hering and also Helmholtz claim that the kind of inversion which occurs is largely a matter of chance or of volition. The latter holds that the perception of perspective figures is influenced by imagination or the images of memory. That is, if one form of the figure is vividly imagined the perception of it is imminent. Helmholtz has stated that, "Glancing at a figure we observe spontaneously one or the other form of perspective and usually the one that is associated in our memory with the greatest number of images."

The physiological hypotheses depend largely upon such factors as accommodation and eye-movement. Necker held to the former as the chief cause. He has stated that the part of the figure whose image lies near the fovea is estimated as nearer than those portions in the peripheral regions of the visual field. This hypothesis is open to serious objections. Wundt contends that the inversion is caused by changes in the points and lines of fixation. He says, "The image of the retina ought to have a determined position if a perspective illusion is to appear; but the form of this illusion is entirely dependent on motion and direction." Some hypotheses interweave the known facts of the nervous system with psychological facts but some of these are examples of a common anomaly in theorization, for facts plus facts do not necessarily result in a correct theory. That is, two sets of facts interwoven do not necessarily yield an explanation which is correct.

THE INFLUENCE OF ANGLES

Apparently Z?llner was the first to describe an illusion which is illustrated in simple form in Fig. 29 and more elaborately in Figs. 37 to 40. The two figures at the right of Fig. 29 were drawn for another purpose and are not designed favorably for the effect, although it may be detected when the figure is held at a distance. Z?llner accidentally noticed the illusion on a pattern designed for a print for dress-goods. The illusion is but slightly noticeable in Fig. 29, but by multiplying the number of lines the long parallel lines appear to diverge in the direction that the crossing lines converge. Z?llner studied the case thoroughly and established various facts. He found that the illusion is greatest when the long parallel lines are inclined about 45 degrees to the horizontal. This may be accomplished for Fig. 37, by turning the page through an angle of 45 degrees from normal. The illusion vanishes when held too far from the eye to distinguish the short crossing lines, and its strength varies with the inclination of the oblique lines to the main parallels. The most effective angle between the short crossing lines and the main parallels appears to be approximately 30 degrees. In Fig. 37 there are two illusions of direction. The parallel vertical strips appear unparallel and the right and left portions of the oblique cross-lines appear to be shifted vertically. It is interesting to note that steady fixation diminishes and even destroys the illusion.

The maximum effectiveness of the illusion, when the figure is held so that the main parallel lines are at an inclination of about 45 degrees to the horizontal was accounted for by Z?llner as the result of less visual experience in oblique directions. He insisted that it takes less time and is easier to infer divergence or convergence than parallelism. This explanation appears to be disproved by a figure in which slightly divergent lines are used instead of parallel ones. Owing to the effect of the oblique crossing lines, the diverging lines may be made to appear parallel. Furthermore it is difficult to attach much importance to Z?llner's explanation because the illusion is visible under the extremely brief illumination provided by one electric spark. Of course, the duration of the physiological reaction is doubtless greater than that of the spark, but at best the time is very short. Hering explained the Z?llner illusion as due to the curvature of the retina, and the resulting difference in the retinal images, and held that acute angles appear relatively too large and obtuse ones too small. The latter has been found to have limitations in the explanation of certain illusions.

This Z?llner illusion is very striking and may be constructed in a variety of forms. In Fig. 37 the effect is quite apparent and it is interesting to view the figure at various angles. For example, hold the figure so that the broad parallel lines are vertical. The illusion is very pronounced in this position; however, on tilting the page backward the illusion finally disappears. In Fig. 38 the short oblique lines do not cross the long parallel lines and to make the illusion more striking, the obliquity of the short lines is reversed at the middle of the long parallel lines. Variations of this figure are presented in Figs. 39 and 40. In this case by steady fixation the perspective effect is increased but there is a tendency for the parallel lines to appear more nearly truly parallel than when the point of sight is permitted to roam over the figures.

This illusion apparently is due to the presence of the angle and the effect is produced by the presence of right and acute angles to a less degree. The illusion decreases or increases in general as the angle decreases or increases respectively.

Add to tbrJar First Page Next Page Prev Page

 

Back to top