bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Visual Illusions: Their Causes Characteristics and Applications by Luckiesh Matthew

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 537 lines and 62333 words, and 11 pages

FIGURE PAGE

b. A disk and a sphere lighted by perfectly diffused light 145

VISUAL ILLUSIONS

INTRODUCTION

Seeing is deceiving. Thus a familiar epigram may be challenged in order to indicate the trend of this book which aims to treat certain phases of visual illusions. In general, we do not see things as they are or as they are related to each other; that is, the intellect does not correctly interpret the deliverances of the visual sense, although sometimes the optical mechanism of the eyes is directly responsible for the illusion. In other words, none of our conceptions and perceptions are quite adequate, but fortunately most of them are satisfactory for practical purposes. Only a part of what is perceived comes through the senses from the object; the remainder always comes from within. In fact, it is the visual sense or the intellect which is responsible for illusions of the various types to be discussed in the following chapters. Our past experiences, associations, desires, demands, imaginings, and other more or less obscure influences create illusions.

An illusion does not generally exist physically but it is difficult in some cases to explain the cause. Certainly there are many cases of errors of judgment. A mistaken estimate of the distance of a mountain is due to an error of judgment but the perception of a piece of white paper as pink on a green background is an error of sense. It is realized that the foregoing comparison leads directly to one of the most controversial questions in psychology, but there is no intention on the author's part to cling dogmatically to the opinions expressed. In fact, discussions of the psychological judgment involved in the presentations of the visual sense are not introduced with the hope of stating the final word but to give the reader an idea of the inner process of perception. The final word will be left to the psychologists but it appears possible that it may never be formulated.

In general, a tree appears of greater length when standing than when lying upon the ground. Lines, areas, and masses are not perceived in their actual physical relations. The appearance of a colored object varies considerably with its environment. The sky is not perceived as infinite space nor as a hemispherical dome, but as a flattened vault. The moon apparently diminishes in size as it rises toward the zenith. A bright object appears larger than a dark object of the same physical dimensions. Flat areas may appear to have a third dimension of depth. And so on.

Illusions are so numerous and varied that they have long challenged the interest of the scientist. They may be so useful or even so disastrous that they have been utilized or counteracted by the skilled artist or artisan. The architect and painter have used or avoided them. The stage-artist employs them to carry the audience in its imagination to other environments or to far countries. The magician has employed them in his entertainments and the camoufleur used them to advantage in the practice of deception during the recent war. They are vastly entertaining, useful, deceiving, or disastrous, depending upon the viewpoint.

Incidentally, a few so-called illusions will be discussed which are not due strictly to errors of the visual sense or of the intellect. Examples of these are the mirage and certain optical effects employed by the magician. In such cases neither the visual sense nor the intellect errs. In the case of the mirage rays of light coming from the object to the eye are bent from their usual straight-line course and the object appears to be where it really is not. However, with these few exceptions, which are introduced for their specific interest and for the emphasis they give to the "true" illusion, it will be understood that illusions in general as hereinafter discussed will mean those due to the visual mechanism or to errors of judgment or intellect. For the sake of brevity we might say that they are those due to errors of visual perception. Furthermore, only those of a "static" type will be considered; that is, the vast complexities due to motion are not of interest from the viewpoint of the aims of this book.

There are two well-known types of misleading perceptions, namely illusions and hallucinations. If, for example, two lines appear of equal length and are not, the error in judgment is responsible for what is termed an "illusion." If the perceptual consciousness of an object appears although the object is not present, the result is termed an "hallucination." For example, if something is seen which does not exist, the essential factors are supplied by the imagination. Shadows are often wrought by the imagination into animals and even human beings bent upon evil purpose. Ghosts are created in this manner. Hallucinations depend largely upon the recency, frequency, and vividness of past experience. A consideration of this type of misleading perception does not advance the aims of this book and therefore will be omitted.

The connection between the material and mental in vision is incomprehensible and apparently must ever remain so. Objects emit or reflect light and the optical mechanism known as the eye focuses images of the objects upon the retina. Messages are then carried to the brain where certain molecular vibrations take place. The physiologist records certain physical and chemical effects in the muscles, nerves, and brain and behold! there appears consciousness, sensations, thoughts, desires, and volitions. How? and, Why? are questions which may never be answered.

Owing to the vast complex beyond the physical phenomena, physical measurements upon objects and space which have done so much toward building a solid foundation for scientific knowledge fail ultimately to provide an exact mathematical picture of that which is perceived. Much of the author's previous work has been devoted to the physical realities but the ever-present differences between physical and perceptive realities have emphasized the need for considering the latter as well.

Illusions are legion. They greet the careful observer on every hand. They play a prominent part in our appreciation of the physical world. Sometimes they must be avoided, but often they may be put to work in various arts. Their widespread existence and their forcefulness make visual perception the final judge in decoration, in painting, in architecture, in landscaping, in lighting, and in other activities. The ultimate limitation of measurements with physical instruments leaves this responsibility to the intellect. The mental being is impressed with things as perceived, not with things as they are. It is believed that this intellectual or judiciary phase which plays such a part in visual perception will be best brought out by examples of various types of static illusions coupled with certain facts pertaining to the eye and to the visual process as a whole.

In special simple cases it is not difficult to determine when or how nearly a perception is true but in general, agreement among normal persons is necessary owing to the absence of any definite measuring device which will span the gap between the perception and the objective reality. Illusions are sometimes called "errors of sense" and some of them are such, but often they are errors of the intellect. The senses may deliver correctly but error may arise from imagination, inexperience, false assumptions, and incorrect associations, and the recency, frequency, and vividness of past experience. The gifts of sight are augmented by the mind with judgments based upon experience with these gifts.

The direct data delivered by the visual sense are light, intensity, color, direction. These may be considered as simple or elemental sensations because they cannot be further simplified or analyzed. At this point it is hoped that no controversy with the psychologist will be provoked. In the space available it appears unfruitful to introduce the many qualifications necessary to satisfy the, as yet uncertain or at least conflicting, definitions and theories underlying the science of psychology. If it is necessary to add darkness to the foregoing group of elemental visual sensations, this will gladly be agreed to.

The perceptions of outline-form and surface-contents perhaps rank next in simplicity; however, they may be analyzed into directions. The perception of these is so direct and so certain that it may be considered to be immediate. A ring of points is apparently very simple and it might be considered a direct sense-perception, but it consists of a number of elemental directions.

The perception of solid-form is far more complex than outline-form and therefore more liable to error. It is judged partially by binocular vision or perspective and partly by the distribution of light and shade. Colors may help to mold form and even to give depth to flat surfaces. For example, it is well known that some colors are "advancing" and others are "retiring."

Perhaps of still greater complexity are the judgments of size and of distance. Many comparisons enter such judgments. The unconscious acts of the muscles of the eye and various external conditions such as the clearness of the atmosphere play prominent parts in influencing judgment. Upon these are superposed the numerous psycho-physiological phenomena of color, irradiation, etc.

In vision judgments are quickly made and the process apparently is largely outside of consciousness. Higher and more complex visual judgments pass into still higher and more complex intellectual judgments. All these may appear to be primary, immediate, innate, or instinctive and therefore, certain, but the fruits of studies of the psychology of vision have shown that these visual judgments may be analyzed into simpler elements. Therefore, they are liable to error.

That the ancients sensed the existence or possibility of illusions is evidenced by the fact that they tried to draw and to paint although their inability to observe carefully is indicated by the absence of true shading. The architecture of ancient Greece reveals a knowledge of certain illusions in the efforts to overcome them. However, the study of illusions did not engage the attention of scientists until a comparatively recent period. Notwithstanding this belated attention there is a vast scientific literature pertaining to the multitudinous phases of the subject; however, most of it is fragmentary and much of it is controversial. Some of it deals with theory for a particular and often a very simple case. In life complex illusions are met but at present it would be futile to attempt to explain them in detail. Furthermore, there have been few attempts to generalize and to group examples of typical phenomena in such a manner as to enable a general reader to see the complex fabric as a whole. Finally, the occurrence and application of illusions in various arts and the prominence of illusions on every hand have not been especially treated. It is the hope that this will be realized in the following chapters in so far as brevity of treatment makes this possible.

Doubtless thoughtful observers ages ago noticed visual illusions, especially those found in nature and in architecture. When it is considered that geometrical figures are very commonly of an illusory character it appears improbable that optical illusions could have escaped the keenness of Euclid. The apparent enlargement of the moon near the horizon and the apparent flattened vault of the sky were noticed at least a thousand years ago and literature yields several hundred memoirs on these subjects. One of the oldest dissertations upon the apparent form of the sky was published by Alhazen, an Arab astronomer of the tenth century. Kepler in 1618 wrote upon the subject.

Philosophers of the past centuries prepared the way toward an understanding of many complexities of today. They molded thought into correct form and established fundamental concepts and principles. Their chief tool was philosophy, the experimental attack being left to the scientists of the modern age. However, they established philosophically such principles as "space and time are not realities of the phenomenal world but the modes under which we see things apart." As science became organized during the present experimental era, measurements were applied and there began to appear analytical discussions of various subjects including optical illusions. One of the earliest investigations of the modern type was made by Oppel, an account of which appeared in 1854. Since that time scientific literature has received thousands of worthy contributions dealing with visual illusions.

There are many facts affecting vision regarding which no theory is necessary. They speak for themselves. There are many equally obvious facts which are not satisfactorily explained but the lack of explanation does not prevent their recognition. In fact, only the scientist needs to worry over systematic explanations and theoretical generalizations. He needs these in order to invade and to explore the other unknowns where he will add to his storehouse of knowledge. A long step toward understanding is made by becoming acquainted with certain physical, physiological, and psychological facts of light, color, and lighting. Furthermore, acquaintance with the visual process and with the structure of the eye aids materially. For this reason the next two chapters have been added even at the risk of discouraging some readers.

In a broad sense, any visual perception which does not harmonize with physical measurements may be termed an "illusion." Therefore, the term could include those physical illusions obtained by means of prisms, lenses, and mirrors and such illusions as the mirage. It could also include the physiological illusions of light and color such as after-images, irradiation, and contrast, and the psycho-physiological illusions of space and the character of objects. In fact, the scope of the following chapters is arbitrarily extended to include all these aspects, but confines consideration only to "static" illusions.

In a more common sense attention is usually restricted to the last group; that is, to the psycho-physiological illusions attending the perception of space and the character of objects although motion is often included. It should be obvious that no simple or even single theory can cover the vast range of illusions considered in the broad sense because there are so many different kinds of factors involved. For this reason explanations will be presented wherever feasible in connection with specific illusions. However, in closing this chapter it appears of interest to touch upon the more generally exploited theories of illusions of the type considered in the foregoing restricted sense. Hypotheses pertaining to illusions are generally lacking in agreement, but for the special case of what might be more safely termed "geometrical-optical illusions" two different theories, by Lipps and by Wundt respectively, are conspicuous. In fact, most theories are variants of these two systematic "explanations" of illusions .

THE EYE

Helmholtz, who contributed so much toward our knowledge of the visual process, in referring to the eye, once stated that he could make a much better optical instrument but not a better eye. In other words, the eye is far from an ideal optical instrument but as an eye it is wonderful. Its range of sensitiveness and its adaptability to the extreme variety of demands upon it are truly marvelous when compared with instruments devised by mankind. Obviously, the eye is the connecting link between objective reality and visual perception and, therefore, it plays an important part in illusions. In fact, sometimes it is solely responsible for the illusion. The process of vision may be divided into several steps such as the lighting, color, character, and disposition of objects; the mechanism by which the image is formed upon the retina; various optical defects of this mechanism; the sensitiveness of the parts of the retina to light and color; the structure of the retina; the parts played by monocular and binocular vision; and the various events which follow the formation of the image upon the retina.

The mechanism of the eye makes it possible to see not only light but objects. Elementary eyes of the lowest animals perceive light but cannot see objects. These eyes are merely specialized nerves. In the human eye the optic nerve spreads to form the retina and the latter is a specialized nerve. Nature has accompanied this evolution by developing an instrument the--eye--for intensifying and defining and the whole is the visual sense-organ. The latter contains the most highly specialized nerve and the most refined physiological mechanism, the result being the highest sense-organ.

The eye is approximately a spherical shell transparent at the front portion and opaque over the remaining eighty per cent of its surface. The optical path consists of a series of transparent liquids and solids. The chief details of the structure of the eye are represented in Fig. 1. Beginning with the exterior and proceeding toward the retina we find in succession the cornea, the anterior chamber containing the aqueous humor, the iris, the lens, the large chamber containing the vitreous humor, and finally the retina. Certain muscles alter the position of the eye and consequently the optical axis, and focusing is accomplished by altering the thickness and shape, and consequently the focal length, of the lens.

In the camera and photographic process we trace mechanism, physics, and chemistry throughout. In the eye and visual process we are able to trace these factors only to a certain point, where we encounter the super-physical and super-chemical. Here molecular change is replaced by sensation, perception, thought, and emotion. Our exploration takes us from the physical world into another, wholly different, where there reigns another order of phenomena. We have passed from the material into the mental world.

The explanation of the foregoing is not difficult. The pin-head is so close to the eye that the image cannot be focused upon the retina; however, it is in a very favorable position to cast a shadow upon the retina, the light-source being the pin-hole with a bright background. Light streaming through the pin-hole into the eye casts an erect shadow of the pin-head upon the retina, and this erect image is projected into space and inverted in the process by the effect of the lens. The latter is not operative during the casting of the shadow because the pin-head is too close to the lens, as already stated. It is further proved to be outward projection of the retinal image because by multiplying the number of pin-holes there are also a corresponding number of shadows.

The foregoing not only illustrates the inversion of the image but again emphasizes the fact that we do not see retinal images. Even the "stars" which we see on pressing the eye-lid or on receiving a blow on the eye are projected into space. The "motes" which we see in the visual field while gazing at the sky are defects in the eye-media, and these images are projected into space. We do not see anything in the eye. The retinal image impresses the retina in some definite manner and the impression is carried to the brain by the optic nerve. The intellect then refers or projects this impression outward into space as an external image. The latter would be a facsimile of the physical object if there were no illusions but the fact that there are illusions indicates that errors are introduced somewhere along the path from and to the object.

It is interesting to speculate whether the first visual impression of a new-born babe is "projected outward" or is perceived as in the eye. It is equally futile to conjecture in this manner because there is no indication that the time will come when the baby can answer us immediately upon experiencing its first visual impression. The period of infancy increases with progress up the scale of animal life and this lengthening is doubtless responsible and perhaps necessary for the development of highly specialized sense-organs. Incidentally, suppose a blind person to be absolutely uneducated by transferred experience and that he suddenly became a normal adult and able to see. What would he say about his first visual impression? Apparently such a subject is unobtainable. The nearest that such a case had been approached is the case of a person born blind, whose sight has been restored. This person has acquired much experience with the external world through other senses. It has been recorded that such a person, after sight was restored, appeared to think that external objects "touched" the eyes. Only through visual experience is this error in judgment rectified.

Man studies his kind too much apart from other animals and perhaps either underestimates or overestimates the amount of inherited, innate, instinctive qualities. A new-born chick in a few minutes will walk straight to an object and seize it. Apparently this implies perception of distance and direction and a co?rdination of muscles for walking and moving the eyes. It appears reasonable to conclude that a certain amount of the wealth of capacities possessed by the individual is partly inherited, and in man the acquired predominates. But all capacities are acquired, for even the inherited was acquired in ancestral experience. Even instinct must involve inherited experience. These glimpses of the depths to which one must dig if he is to unearth the complete explanations of visual perception--and consequently of illusions--indicate the futility of treating the theories in the available space without encroaching unduly upon the aims of this volume.

Certain defects of the optical system of the eye must contribute toward causing illusions. Any perfect lens of homogeneous material has at least two defects, known as spherical and chromatic aberration. The former manifests itself by the bending of straight lines and is usually demonstrated by forming an image of an object such as a wire mesh or checkerboard; the outer lines of the image are found to be very much bent. This defect in the eye-lens is somewhat counteracted by a variable optical density, increasing from the outer to the central portion. This results in an increase in refractive-index as the center of the lens is approached and tends to diminish its spherical aberration. The eye commonly possesses abnormalities such as astigmatism and eccentricity of the optical elements. All these contribute toward the creation of illusions.

The structure of the retina plays a very important part in vision and accounts for various illusions and many interesting visual phenomena. The optic nerve spreads out to form the retina which constitutes the inner portion of the spherical shell of the eye with the exception of the front part. Referring again to Fig. 1, the outer coating of the shell is called the sclerotic. This consists of dense fibrous tissue known as the "white of the eye." Inside this coating is a layer of black pigment cells termed the choroid. Next is the bacillary layer which lines about five-sixths of the interior surface of the eye. This is formed by closely packed "rods" and "cones," which play a dominant role in the visual process. A light-sensitive liquid and cellular and fibrous layers complete the retinal structure.

The bacillary layer consists of so-called rods and cones. Only the rods function under very low intensities of illumination of the order of moonlight. The cones are sensitive to color and function only at intensities greater than what may be termed twilight intensities. These elements are very small but the fact that they appear to be connecting links between the retinal image and visual perception, acuity or discrimination of fine detail is limited inasmuch as the elements are of finite dimensions. The smallest image which will produce a visual impression is the size of the end of a cone. The smallest distance between two points which is visible at five inches is about 0.001 inch. Two cones must be stimulated in such a case. Fine lines may appear crooked because of the irregular disposition of these elemental light-sensitive points. This apparent crookedness of lines is an illusion which is directly due to the limitations of retinal elements of finite size.

The distribution of rods and cones over the retina is very important. In the fovea centralis--the point of the retina on the optical axis of the eye--is a slight depression much thinner than the remainder of the retina and this is inhabited chiefly by cones. It is this spot which provides visual acuteness. It is easily demonstrated that fine detail cannot be seen well defined outside this central portion of the visual field. When we desire to see an object distinctly we habitually turn the head so that the image of the object falls upon the fovea of each eye. Helmholtz has compared the foveal and lateral images with a finished drawing and a rough sketch respectively.

The fovea also contains a yellow pigmentation which makes this area of the retina selective as to color-vision. On viewing certain colors a difference in color of this central portion of the field is often very evident. In the outlying regions of the retina, rods predominate and in the intermediate zone both rods and cones are found. Inasmuch as rods are not sensitive to color and cones do not function at low intensities of illumination it is obvious that visual impressions should vary, depending upon the area of the retina stimulated. In fact, many interesting illusions are accounted for in this manner, some of which are discussed later.

It is well known that a faint star is seen best by averted vision. It may be quite invisible when the eye is directed toward it, that is, when its image falls upon the rod-free fovea. However, by averting the line of sight slightly, the image is caused to fall on a retinal area containing rods and the star may be readily recognized. The fovea is the point of distinct focus. It is necessary for fixed thoughtful attention. It exists in the retina of man and of higher monkeys but it quickly disappears as we pass down the scale of animal life. It may be necessary for the safety of the lower animals that they see equally well over a large field; however, it appears advantageous that man give fixed and undivided attention to the object looked at. Man does not need to trust solely to his senses to protect himself from dangers. He uses his intellect to invent and to construct artificial defenses. Without the highly specialized fovea we might see equally well over the whole retina but could not look attentively at anything, and therefore could not observe thoughtfully.

When an image of a bright object exists upon the retina for a time there results a partial exhaustion or fatigue of the retinal processes with a result that an after-image is seen. This after-image may be bright for a time owing to the fact that it takes time for the retinal process to die out. Then there comes a reaction which is apparent when the eye is directed toward illuminated surfaces. The part of the retina which has been fatigued does not respond as fully as the fresher areas, with the result that the fatigued area contributes a darker area in the visual field. This is known as an after-image and there are many interesting variations.

The after-image usually undergoes a series of changes in color as well as in brightness as the retinal process readjusts itself. An after-image of a colored object may often appear of a color complementary to the color of the object. This is generally accounted for by fatigue of the retinal process. There are many conflicting theories of color-vision but they are not as conflicting in respect to the aspect of fatigue as in some other aspects. If the eye is directed toward a green surface for a time and then turned toward a white surface, the fatigue to green light diminishes the extent of response to the green rays in the light reflected by the white surface. The result is the perception of a certain area of the white surface as of a color equal to white minus some green--the result of which is pink or purple. This is easily understood by referring to the principles of color-mixture. Red, green, and blue mixed in proper proportions will produce any color or tint and even white. Thus these may be considered to be the components of white light. Hence if the retina through fatigue is unable to respond fully to the green component, the result may be expressed mathematically as red plus blue plus reduced green, or synthetically a purplish white or pink. When fatigued to red light the after-image on a white surface is blue-green. When fatigued to blue light it is yellowish.

Further mixtures may be obtained by directing the after-image upon colored surfaces. In this manner many of the interesting visual phenomena and illusions associated with the viewing of colors are accounted for. The influence of a colored environment upon a colored object is really very great. This is known as simultaneous contrast. The influence of the immediately previous history of the retina upon the perception of colored surfaces is also very striking. This is called successive contrast. It is interesting to note that an after-image produced by looking at a bright light-source, for example, is projected into space even with the eyes closed. It is instructive to study after-images and this may be done at any moment. On gazing at the sun for an instant and then looking away, an after-image is seen which passes in color from green, blue, purple, etc., and finally fades. For a time it is brighter than the background which may conveniently be the sky. On closing the eyes and placing the hands over them the background now is dark and the appearance of the after-image changes markedly. There are many kinds, effects, and variations of after-images, some of which are discussed in other chapters.

As the intensity of illumination of a landscape, for example, decreases toward twilight, the retina diminishes in sensibility to the rays of longer wave-lengths such as yellow, orange, and red. Therefore, it becomes relatively more sensitive to the rays of shorter wave-length such as green, blue, and violet. The effects of this Purkinje phenomenon may be added to the class of illusions treated in this book. It is interesting to note in this connection that moonlight is represented on some paintings and especially on the stage as greenish blue in color, notwithstanding that physical measurements show it to be approximately the color of sunlight. In fact, it is sunlight reflected by dead, frigid, and practically colorless matter.

Some illusions may be directly traced to the structure of the eye under unusual lighting conditions. For example, in a dark room hold a lamp obliquely outward but near one eye and forward sufficiently for the retina to be strongly illuminated. Move the lamp gently while gazing at a plain dark surface such as the wall. Finally the visual field appears dark, due to the intense illumination of the retina and there will appear, apparently projected upon the wall, an image resembling a branching leafless tree. These are really shadows of the blood vessels in the retina. The experiment is more successful if an image of a bright light-source is focused on the sclerotic near the cornea. If this image of the light-source is moved, the tree-like image seen in the visual field will also move.

It may be said that in general the eyes are never at rest. Involuntary eye-movements are taking place all the time, at least during consciousness. Some have given this restlessness a major part in the process of vision but aside from the correctness of theories involving eye-movements, it is a fact that they are responsible for certain illusions. On a star-lit night if one lies down and looks up at a star the latter will be seen to appear to be swimming about more or less jerkily. On viewing a rapidly revolving wheel of an automobile as it proceeds down the street, occasionally it will be seen to cease revolving momentarily. These apparently are accounted for by involuntary eye-movements which take place regardless of the effort made to fixate vision.

If the eyelids are almost closed, streamers appear to radiate in various directions from a light-source. Movements of the eyelids when nearly closed sometimes cause objects to appear to move. These may be accounted for perhaps by the distortion of the moist film which covers the cornea.

The foregoing are only a few of the many visual phenomena due largely to the structure of the eye. The effects of these and many others enter into visual illusions, as will be seen here and there throughout the chapters which follow.

VISION

A description of the eye by no means suffices to clarify the visual process. Even the descriptions of various phenomena in the preceding chapter accomplish little more than to acquaint the reader with the operation of a mechanism, although they suggest the trend of the explanations of many illusions. At best only monocular vision has been treated, and it does not exist normally for human beings. A person capable only of monocular vision would be like Cyclops Polyphemus. We might have two eyes, or even, like Argus, possess a hundred eyes and still not experience the wonderful advantages of binocular vision, for each eye might see independently. The phenomena of binocular vision are far less physical than those of monocular vision. They are much more obscure, illusory, and perplexing because they are more complexly interwoven with or allied to psychological phenomena.

Add to tbrJar First Page Next Page

 

Back to top