Read Ebook: Coal and What We Get from It by Meldola Raphael
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 499 lines and 34854 words, and 10 pages
The phenols of naphthalene are called naphthols--they bear the same relationship to naphthalene that carbolic acid bears to benzene. Owing to the structure of the naphthalene molecule there are two isomeric naphthols, whereas there is only one phenol. The naphthols--known as alpha- and beta-naphthol, respectively--are now made on a large scale from naphthalene, by heating the latter with sulphuric acid; at a low temperature the alpha sulpho-acid is produced, and at a higher temperature the beta sulpho-acid, and these acids on fusion with caustic soda furnish the corresponding naphthols. Similarly there are two amidonaphthalenes, known as alpha- and beta-naphthylamine respectively. As aniline is to benzene, so are the naphthylamines to naphthalene. The alpha-compound is made in precisely the same way as aniline, viz. by acting upon naphthalene with nitric acid so as to form nitronaphthalene, and then reducing the latter with iron dust and acid. Beta-napthylamine cannot be made in this way; it is prepared from beta-naphthol by heating the latter in presence of ammonia, when the hydroxyl becomes replaced by the amido-group in accordance with a process patented in 1880 by the Baden Aniline Company. The principle thus utilized is the outcome of the scientific work of two Austrian chemists, Merz and Weith. Setting out from the naphthols and naphthylamines we shall be led into industrial developments of the greatest importance.
The first naphthalene colour was a yellow dye, discovered by Martius in 1864, and manufactured under the name of "Manchester yellow." It is, chemically speaking, dinitro-alpha-naphthol; but it was not at first made from naphthol, as the latter was not at the time a technical product. It was made from alpha-naphthylamine by the action of nitrous and nitric acids. When a good method for making the naphthol was discovered in 1869, the dye was made from this. The process is just the same as that employed in making picric acid; the naphthol is converted into a sulpho-acid, and this when acted upon by nitric acid, gives the colouring-matter. Manchester yellow is now largely used for colouring soap, but as a dye-stuff it has been improved upon in a manner that will be readily understood. The original colouring-matter being somewhat fugitive, it was found that its sulpho-acid was much faster. This sulpho-acid cannot be made by the direct action of sulphuric acid upon the colouring-matter--as in the case of acid yellow or acid magenta--but by acting upon the naphthol with very strong sulphuric acid, three sulphuric acid residues or sulpho-groups enter the molecule, and then on nitration only two of these are replaced by nitro-groups, and there results a sulpho-acid of dinitro-alpha-naphthol. This was discovered in 1879 by Caro, and introduced as "acid naphthol yellow." It is now one of the standard yellow dyes.
The other compound, resorcinol, was known to chemistry ten years before it was utilized as a source of colouring-matters. It was originally prepared by fusing certain resins, such as galbanum, asafoetida, &c., with caustic alkali. Soon after its discovery, viz. in 1866, it was shown by K?rner to be a derivative of benzene, and from this hint the technical process for the preparation of the compound on a large scale has been developed. Resorcinol is a phenolic derivative of benzene containing two hydroxyl groups; it is therefore related to phenol in the same way that diamidobenzene is related to aniline or phthalic acid to benzoic acid. The relationships can be expressed in a tabular form thus--
Amidobenzene or Aniline. Benzoic acid. Carbolic acid or Phenol. Diamidobenzene. Phthalic acid. Resorcinol.
Resorcinol is now made by heating benzene with very strong sulphuric acid so as to convert it into a disulpho-acid, and the sodium salt of the latter is then fused with alkali. As a technical operation it is one of great delicacy and skill, and the manufacture is confined to a few Continental factories.
It remains to point out that the scientific spirit which prompted the investigation of the phthale?ns in the first instance has followed these compounds throughout their technological career. The researches started by v. Baeyer were taken up by various chemists, whose work together with that of the original discoverer has led to the elucidation of the constitution of these colouring-matters. The phthale?ns are members of the triphenylmethane group, and are therefore related to magenta, corallin, malachite green, methyl violet, and the phosgene dyes.
The introduction of azo-dyes, formed by the action of a diazotised amido-compound on a phenol or another amido-compound, marks the period from which the naphthols and naphthylamines rose to the first rank of importance as raw materials for the colour manufacturer. The introduction of chryso?dine in 1876 was immediately followed by the manufacture of acid azo-dyes obtained by combining diazotised amido-sulpho-acids with phenols of various kinds, or with bases, such as dimethylaniline and diphenylamine. From what has been said in the foregoing portion of this volume, it is evident that all such azo-compounds result from the combination of two things, viz. a diazotised amido-compound, and a phenolic or amidic compound. Either or or both may be a sulpho-acid, and the resulting dye will then also be a sulpho-acid.
The colouring-matters introduced in 1878 by the H?chst factory under the names of "Ponceaux" of various brands, and "Bordeaux," although to some extent superseded by later discoveries, still occupy an important position. Their discovery not only increased the consumption of beta-naphthol, but also that of the bases which were used for diazotising. These bases are alpha-naphthylamine and those of the aniline series. The intimate relationship which exists between chemical science and technology--a relationship which appears so constantly in the foregoing portions of this work--is well brought out by the discovery under consideration. A little more chemistry will enable this statement to be appreciated.
Going back for a moment to the hydrocarbons obtained from light oil, it will be remembered that benzene and toluene have thus far been considered as the only ones of importance to the colour-maker. Until the discovery embodied in the patent specification of 1878, the portions of the light oil boiling above toluene were of no value in the colour industry. Benzene and toluene are related to each other in a way which chemists describe by saying that they are "homologous." This means that they are members of a regularly graduated series, the successive terms of which differ by the same number of atoms of carbon and hydrogen. Thus toluene contains one atom of carbon and two atoms of hydrogen more than benzene. Above toluene are higher homologues, viz. xylene, cumene, &c., which occur in the light oil, the former being related to toluene in the same way that toluene is related to benzene, while cumene again contains one atom of carbon and two atoms of hydrogen more than xylene. This relationship between the members of homologous series is expressed in other terms by saying that the weight of the molecule increases by a constant quantity as we ascend the series.
The homology existing among the hydrocarbons extends to all their derivatives. Thus phenol is the lower homologue of the cresols. Also we have the homologous series--
Benzene. Nitrobenzene. Aniline. Toluene. Nitrotoluene. Toluidine. Xylene. Nitroxylene. Xylidine. Cumene. Nitrocumene. Cumidine.
The bases of the third column when diazotised and combined with the disulpho-acids of beta-naphthol give a graduated series of dyes beginning with orange and ending with bluish scarlet. Thus it was observed that the toluidine colour was redder than the aniline colour, and it was a natural inference that the xylidine colour would be still redder. At the time of this discovery no azo-colour of a true scarlet shade had been manufactured successfully. A demand for the higher homologues of benzene was thus created, and the higher boiling-point fractions of the light oil, which had been formerly used as solvent naphtha, became of value as sources of colouring-matters. The isolation of coal-tar xylene is easily effected by fractional distillation with a rectifying column, and by nitration and reduction, in the same way as in the manufacture of aniline, xylidine is placed at the disposal of the colour-maker.
Xylidine scarlet, although at the time of its introduction the only true azo-scarlet likely to come into competition with cochineal, was still somewhat on the orange side. The cumidine dye would obviously be nearer the desired shade. To meet this want, cumidine had to be made on a large scale, but here practical difficulties interposed themselves. The quantity of cumene in the light oil is but small, and it is associated with other hydrocarbons which are impurities from the present point of view, and from which it is separated only with difficulty. A new source of the base had therefore to be sought, and here again we find chemical science ministering to the wants of the technologist.
From these beginnings the development of the azo-dyes has been steadily carried on to the present time--year by year new diazotisable amido-compounds or new sulpho-acids of the naphthols and naphthylamines are being discovered, and this branch of the colour industry has already assumed colossal dimensions. An important departure was made in 1884 by B?ttiger, who introduced the first secondary azo-colours derived from benzidine. As already explained in connection with salicylic acid, this base and its homologue tolidine form tetrazo-salts, which combine with phenols and amines or their sulpho-acids. One of the first colouring-matters of this group was obtained by combining diazotised benzidine with the sulpho-acid of alpha-naphthylamine , and was introduced under the name of "Congo red." Then came the discovery , that the tetrazo-salts of benzidine and tolidine combine with phenols, amines, &c., in two stages, one of the diazo-groups first combining with one-half of the whole quantity of phenol to form an intermediate compound, which then combines with the other half of the phenol to form the secondary azo-dye. In the hands of the "Actiengesellschaft f?r Anilinfabrikation" of Berlin this discovery has been utilized for the production of a number of such azo-colours containing two distinct phenols, or amines, or sulpho-acids. Tolidine has been found to give better colouring-matters in most cases than benzidine, and it is scarcely necessary to point out that an increased demand for the nitrotoluene from which this base is made is the necessary consequence of this discovery.
It is impossible to attempt to specify by name any of these recent benzidine and tolidine dyes. Their introduction has been the means of finding new uses for the naphthylamines and naphthols and their sulpho-acids, and has thus contributed largely to the utilization of naphthalene. An impetus has been given to the investigation of these sulpho-acids, and chemical science has profited largely thereby. The process by which beta-naphthylamine is prepared from beta-naphthol, already referred to, viz. by heating with ammonia under pressure, has been extended to the sulpho-acids of beta-naphthol, and by this means new beta-naphthylamine sulpho-acids have been prepared, and figure largely in the production of these secondary azo-colours. The latter, as previously stated, possess the most valuable property of dyeing cotton fibre directly, and by their means the art of cotton dyeing has been greatly simplified. The shades given by these colours vary from yellow through orange to bright scarlet, violet, or purple.
In addition to benzidine and tolidine, other diazotisable amido-compounds have of late years been pressed into the service of the colour-manufacturer. The derivative of stilbene, already mentioned as being prepared from a sulpho-acid of one of the nitrotoluenes, forms tetrazo-salts, which can be combined with similar or dissimilar phenols, amines, or sulpho-acids, as in the case of benzidine and tolidine. Various shades of red and purple are thus obtained from the diazotised compound, when the latter is combined with the naphthylamines, naphthols, or their sulpho-acids. These, again, are all cotton dyes. The nitro-derivatives of the ethers of phenol and cresol, when reduced in the same way that nitrobenzene and nitrotoluene are reduced to azobenzene and azotoluene, also furnish azo-compounds which, on further reduction, give bases analogous to benzidine and tolidine. Secondary azo-colours derived from these bases and the usual naphthalene derivatives are also manufactured. It is among the secondary azo-dyes that we meet with the first direct dyeing blacks, the importance of which will be realized when it is remembered that the ordinary aniline-black is not adapted for wool dyeing. The azo-blacks are obtained by combining diazotised sulpho-acids of amidoazo-compounds of the benzene or naphthalene series with naphthol sulpho-acids or other naphthalene derivatives.
So much for the azo-dyes, one of the most prolific fields of industrial enterprise connected with coal-tar technology. From the introduction of aniline yellow in 1863 to the present time, about 150 distinct compounds of this group have been given to the tinctorial industry. Of these over thirty are cotton dyes containing two azo-groups. Sombre shades, rivalling logwood black, bright yellows, orange-reds, browns, violets, and brilliant scarlets equalling cochineal, have been evolved from the refuse of the gas-works. The artificial colouring-matters have in this last case once again threatened a natural product, and with greater success than the indigo synthesis, for the introduction of the azo-scarlets has caused a marked decline in the cochineal culture.
In addition to the azo-colours, there are certain other products which claim naphthalene as a raw material. In 1879 it was found that one of the sulpho-acids of beta-naphthol when treated with nitrous acid readily gave a nitroso-sulpho-acid. A salt of this last acid, containing sodium and iron as metallic bases, was introduced in 1884, under the name of "naphthol green." It is used both as a dye for wool and as a pigment. It may be mentioned here that other nitroso-derivatives of phenols, such as those of resorcinol and the naphthols, under the name of "gambines," are largely used for dyeing purposes, owing to the facility with which they combine with metallic mordants to form coloured salts in the fibre. In this same year, 1879, it was found that by heating nitrosodimethylaniline with beta-naphthol in an appropriate solvent, a violet colouring-matter was formed. This is now manufactured under the name of "new blue," or other designations, and is largely used for producing an indigo-blue shade on cotton prepared with a suitable mordant. The discovery of this colouring-matter gave an impetus to further discoveries in the same direction. It was found that nitrosodimethylaniline reacted in a similar way with other phenolic or with amidic compounds. In 1881 K?chlin introduced an analogous dye-stuff prepared by the action of the same nitroso-compound on gallic acid. Gallocyanin, as it is called, imparts a violet blue shade to mordanted cotton. Other colouring-matters of the same group are in use; some of them, like "new blue," being derivatives of naphthalene. These compounds all belong to a series of which the parent substance is constructed on a type similar to azine; it contains a nitrogen and oxygen atom linking together the hydrocarbon residues, and is therefore known as "oxazine." The researches of Nietzki in 1888 first established the true constitution of the oxazines.
Closely related to this group is a colouring-matter introduced by K?chlin and Witt in 1881 under the name of "indophenol." It is prepared in the same way as the azines of the "neutral red" group; viz. by the action of nitrosodimethylaniline on alpha-naphthol, or by oxidizing amidodimethylaniline in the presence of alpha-naphthol. Indophenol belongs to that group of blue compounds formed as intermediate products in the manufacture of azines, as mentioned in connection with "neutral red." But while these intermediate blues resulting from the oxidation of a diamine in the presence of another amine are unstable, and pass readily into red azines, indophenol is stable, and can be used for dyeing and printing in the same way as indigo. The shades which it produces are very similar to this last dye, but for certain practical reasons it has not been able to compete with the natural dye-stuff.
The story of naphthalene is summarized in the schemes on pp. 164, 165.
Light Oil:
Benzene->Disulpho-acid-->Resorcinol. -->Nitrobenzene} } Sulphanilic acid. } Aniline} Amidoazobenzene and sulpho-acid. } } Nitrosodimethylaniline and } } amidodimethylaniline. } Sulpho-acid-->Amidosulpho-acid-->Amidophenol } and ethers. } Azobenzene-->Benzidine.
}Toluidines Sulpho-acids. } Amidoazotoluene } and sulpho-acid. } Thiotoluidine and primuline. Toluene-->Nitrotoluenes} Azotoluene-->Tolidine. } Sulpho-acid and Stilbene-derivative.
} Sulpho-acids. Xylene->Nitroxylenes->Xylidines} Amidoazoxylene and sulpho-acid. } Cumidine.
Carbolic Oil:
Phenol-->Nitrophenol and ethers } Azophenol ethers-->Diamidic bases } analogous to benzidine. } Amidophenol and ethers.
Cresols-->Nitrocresols and ethers-->Amidocresols and ethers.
In 1881 there was introduced into medicine the first of a group of antipyretics derived from coal-tar bases of the pyridine series. It has already been explained that this base is removed from the light oil by washing with acid. Chemically considered, it is benzene containing one atom of nitrogen in place of a group consisting of an atom of carbon and an atom of hydrogen. The quantity of pyridine present in coal-tar is very small, and no use has as yet been found for it excepting as a solvent for washing anthracene or for rendering the alcohol used for manufacturing purposes undrinkable, as is done in this country by mixing in crude wood-spirit so as to form methylated spirit. The salts of pyridine were shown by McKendrick and Dewar to act as febrifuges in 1881, but they have not hitherto found their way into pharmacy. The chief interest of the base for us centres in the fact that it is the type of a group of bases related to each other in the same way as the coal-tar hydrocarbons. Thus in coal-tar, in addition to pyridine, there is another base known as quinoline, which is related to pyridine in the same way that naphthalene is related to benzene. Similarly there is a coal-tar base known as acridine, which is found associated with the anthracene, and which is related to quinoline in the same way that anthracene is related to naphthalene. The three hydrocarbons are comparable with the three bases, which may be regarded as derived from them in the same manner that pyridine is derived from benzene--
Benzene ... ... ... Pyridine Naphthalene ... ... Quinoline Anthracene ... ... ... Acridine
Some of these bases and their homologues are found in the evil-smelling oil produced by the destructive distillation of bones , and the group is frequently spoken of as the pyridine group. The colouring-matter described as phosphine, obtained as a by-product in the manufacture of magenta , is a derivative of acridine, and a yellow colouring-matter discovered by Rudolph in 1881, and obtained by heating the acetyl derivative of aniline with zinc chloride, is a derivative of a homologue of quinoline. This dye-stuff, known as "flavaniline," is no longer made; but it is interesting as having led to the discovery of the constitution of phosphine by O. Fischer and K?rner in 1884.
Quinoline and its homologue quinaldine have been utilized as sources of colouring-matters. A green dye-stuff, known as quinoline green, was formerly made by the same method as that employed for producing the phosgene colours by Caro and Kern's process . The phthale?n of quinaldine was introduced by E. Jacobsen in 1882 under the name of quinoline yellow, a colouring-matter which forms a soluble sulpho-acid by the action of sulphuric acid.
To return to coal-tar pharmaceutical preparations. At the present time seven distinct derivatives of quinoline, all formed by pyridising the amido-group in aniline, amido-phenols, &c., are known in medicine under such names as kairine, kairoline, thalline, and thermifugine. The mode of preparation of these compounds cannot be entered into here, Kairine, the first of the artificial alkalo?ds, is a derivative of hydroxy-quinoline, which was discovered in 1881 by Otto Fischer. All these quinoline derivatives have the property of lowering the temperature of the body in certain kinds of fevers, and may therefore be considered as the first artificial products coming into competition with the natural alkalo?d, quinine. There is reason for believing that the latter alkalo?d, the most valuable of all febrifuges, is related to the quinoline bases, so that if its synthesis is accomplished--as may certainly be anticipated--we shall have to look to coal-tar as a source of the raw materials.
Not the least romantic chapter of coal-tar chemistry is this production of fragrant perfumes from the evil-smelling tar. Be it remembered that these products--which Nature elaborates by obscure physiological processes in the living plant--are no more contained in the tar than are the hundreds of colouring-matters which have been prepared from this same source. It is by chemical skill that these compounds have been built up from their elemental groups; and the artificial products, as in the case of indigo and alizarin, are chemically identical with those obtained from the plant. Among the late achievements in the synthesis of vegetable products from coal-tar compounds is that of juglone, a crystalline substance found in walnut-shell. It was shown by Bernthsen in 1884 that this compound was hydroxy-naphthaquinone, and in 1887 its synthesis from naphthalene was accomplished by this same chemist in conjunction with Dr. Semper.
The remarkable achievements of modern chemistry in connection with coal-tar products do not end with the formation of colouring-matters, medicines, and perfumes. The introduction of the beautiful dyes has had an influence in other directions, and has led to results quite unsuspected until the restless spirit of investigation opened out new fields for their application. A few of these secondary uses are sufficiently important to be chronicled here. In sanitary engineering, for example, the intense colouring power of fluoresce?n is frequently made use of to test the soundness of drains, or to find out whether a well receives drainage from insanitary sources. In photography also coal-tar colouring-matters are playing an important part by virtue of a certain property which some of these compounds possess.
The ordinary photographic plate is, as is well known, much more sensitive to blue and violet than to yellow or red, so that in photographing coloured objects the picture gives a false impression of colour intensity, the violets and blues impressing themselves too strongly, and the yellows and reds too feebly. It was discovered by Dr. H. W. Vogel in 1873 that if the sensitive film is slightly tinted with certain colouring-matters, the sensitiveness for yellow and red can be much increased, so that the picture is a more natural representation of the object. Plates thus dyed are said to be "isochromatic" or "orthochromatic," and by their use paintings or other coloured objects can be photographed with much better results than by the use of ordinary plates. The boon thus conferred upon photographic art is therefore to be attributed to coal-tar chemistry. Among the numerous colouring-matters which have been experimented with, the most effective special sensitizers are erythrosin, one of the phthale?ns, quinoline red, a compound related to the same group, and cyanin, a fugitive blue colouring-matter obtained from quinoline in 1860 by Greville Williams.
In yet another way has photography become indebted to the tar chemist. Two important developers now in common use are coal-tar products, viz. hydroquinone and eikonogen. The history of these compounds is worthy of narration as showing how a product when once given by chemistry to the world may become applicable in quite unexpected directions. Chloroform is a case in point. This compound was discovered by Liebig in 1831, but its use as an anaesthetic did not come about till seventeen years after its discovery. It was Sir James Simpson who in 1848 first showed the value of chloroform in surgical operations. A similar story can be told with respect to these photographic developers.
Towards the middle of the last century a French chemist, the Count de la Garaye, noticed a crystalline substance deposited from the extract of Peruvian bark, then, as now, used in medicine. This substance was the lime salt of an acid to which Vauquelin in 1806 gave the name of quinic acid . In 1838 Woskresensky, by oxidizing quinic acid with sulphuric acid and oxide of manganese, obtained a crystalline substance which he called quinoyl. The name was changed to quinone by W?hler, and, as we have already seen , the term has now become generic, indicating a group of similarly constituted oxygen derivatives of hydrocarbons. Hydroquinone was obtained by Caventou and Pelletier by heating quinic acid, but these chemists did not recognize its true nature. It was the illustrious W?hler who in 1844 first prepared the compound in a state of purity, and established its relationship to quinone. This relationship, as the name given by W?hler indicates, is that of the nature of a hydrogenised quinone. The compound is readily prepared by the action of sulphurous acid or any other reducing agent on the quinone.
It has long been known in photography, that a developer must be of the nature of a reducing agent, either inorganic or organic, and many hydroxylic and amidic derivatives of hydrocarbons come under this category. Thus, pyrogallol, which has already been referred to as a trihydroxybenzene , when dissolved in alkali rapidly absorbs oxygen--it is a strong reducing agent, and is thus of value as a developer. But although pyrogallol is a benzene derivative, and could if necessary be prepared synthetically, it can hardly be claimed as a tar product, as it is generally made from gallic acid. Now hydroquinone when dissolved in alkali also acts as a reducing agent, and in this we have the first application of a true coal-tar product as a photographic developer. Its use for this purpose was suggested by Captain Abney in 1880, and it was found to possess certain advantages which caused it to become generally adopted.
As soon as a practical use is found for a chemical product its manufacture follows as a matter of course. In the case of hydroquinone, the original source, quinic acid, was obviously out of question, for economical reasons. In 1877, however, Nietzki worked out a very good process for the preparation of quinone from aniline by oxidation with sulphuric acid and bichromate of soda in the cold. This placed the production of quinone on a manufacturing basis, so that when a demand for hydroquinone sprung up, the wants of the photographer were met by the technologist. Eikonogen is another organic reducing agent, discovered by the writer in 1880, and introduced as a developer by Dr. Andresen in 1889. It is an amido-derivative of a sulpho-acid of beta-naphthol, so that naphthalene is the generating hydrocarbon of this substance.
The last indirect application of coal-tar colouring-matters to which attention must be called is one of great importance in biology. The use of these dyes as stains for sections of animal and vegetable tissue has long been familiar to microscopists. Owing to the different affinities of the various components of the tissue for the different colouring-matters, these components are capable of being differentiated and distinguished by microscopical analysis. Furthermore, the almost invisible organisms which in recent times have been shown to play such an important part in diseases, have in many cases a special affinity for particular colouring-matters, and their presence has been revealed by this means. The micro-organism of tubercle, for example, was in this way found by Koch to be readily stained by methylene blue, and its detection was thus rendered possible with certainty. Many of the dyes referred to in the previous pages have rendered service in a similar way. To the pure utilitarian such an application of coal-tar products will no doubt compensate for any defects which they may be supposed to possess from the aesthetic point of view.
From a small beginning there has thus developed in a period of five-and-thirty years an enormous industry, the actual value of which at the present time it is very difficult to estimate. We shall not be far out if we put down the value of the coal-tar colouring-matters produced annually in this country and on the Continent at ?5,000,000 sterling. The products which half a century or so ago were made in the laboratory with great difficulty, and only in very small quantities, are now turned out by the hundredweight and the ton. To achieve these results the most profound chemical knowledge has been combined with the highest technological skill. The outcome has been to place at the service of man, from the waste products of the gas-manufacturer, a series of colouring-matters which can compete with the natural dyes, and which in many cases have displaced the latter. From this source we have also been provided with explosives such as picric acid; with perfumes and flavouring materials like bitter-almond oil and vanillin; with a sweetening principle like saccharin--compared with which the product of the sugar-cane is but feeble; with dyes which tint the photographic film, and enable the most delicate gradations of shade to be reproduced; with developers such as hydroquinone and eikonogen; with disinfectants which contribute to the healthiness of our towns; with potent medicines which rival the natural alkalo?ds; and with stains which reveal the innermost structure of the tissues of living things, or which bring to light the hidden source of disease. Surely if ever a romance was woven out of prosaic material it has been this industrial development of modern chemistry.
But although the results are striking enough when thus summed up, and although the industrial importance of all this work will be conceded by those who have the welfare of the country in mind, the paths which the pioneers have had to beat out can unfortunately be followed but by the few. It is not given to our science to strike the public mind at once with the magnitude of its achievements, as is the case with the great works of the engineer. Nevertheless the scientific skill which enables a Forth Bridge to be constructed for the use of the travelling public of this age--marvellous as it may appear to the uninstructed--is equalled, if not surpassed, by the mastery of the intricate atomic groupings which has enabled the chemist to build up the colouring-matters of the madder and indigo plants.
A great industry needs no excuse for its existence provided that it supplies something of use to man, and finds employment for many hands. The coal-tar industry fulfils these conditions, as will be gathered from the foregoing pages. If any further justification is required from a more exalted standpoint than that of pure utilitarianism it can be supplied. It is well known to all who have traced the results of applying any scientific discovery to industrial purposes, that the practical application invariably reacts upon the pure science to the lasting benefit of both. In no department of applied science is this truth more forcibly illustrated than in the branch of technology of which I have here attempted to give a popular account. The pure theory of chemical structure--the guiding spirit of the modern science--has been advanced enormously by means of the materials supplied by and resulting from the coal-tar industry. The fundamental notion of the structure of the benzene molecule marks an epoch in the history of chemical theory of which the importance cannot be too highly estimated. This idea occurred, as by inspiration, to August Kekul? of Bonn in the year 1865, and its introduction has been marked by a quarter century of activity in research such as the science of chemistry has never experienced at any previous period of its history. The theory of the atomic structure of the benzene molecule has been extended and applied to all analogous compounds, and it is in coal-tar that we have the most prolific source of the compounds of this class.
It was scarcely to be wondered at that an idea which has been so prolific as a stimulator of original investigation should have exerted a marked influence on the manufacture of tar-products. All the brilliant syntheses of colouring-matters effected of late years are living witnesses of the fertility of Kekul?'s conception. In the spring of 1890 there was held in Berlin a jubilee meeting commemorating the twenty-fifth anniversary of the benzene theory. At that meeting the representative of the German coal-tar colour industry publicly declared that the prosperity of Germany in this branch of manufacture was primarily due to this theoretical notion. But if the development of the industry has been thus advanced by the theory, it is no less true that the latter has been helped forward by the industry.
The verification of a chemical theory necessitates investigations for which supplies of the requisite materials must be forthcoming. Inasmuch as the very materials wanted were separated from coal-tar and purified on a large scale for manufacturing purposes, the science was not long kept waiting. The laborious series of operations which the chemist working on a laboratory scale had to go through in order to obtain raw materials, could be dispensed with when products which were at one time regarded as rare curiosities became available by the hundredweight. It is perhaps not too much to say that the advancement of chemical theory in the direction started by Kekul? has been accelerated by a century owing to the circumstance that coal-tar products have become the property of the technologist. In other words, we might have had to wait till 1965 to reach our present state of knowledge concerning the theory of benzenoid compounds if the coal-tar industry had not been in existence. And this is not the only way in which the industry has helped the science, for in the course of manufacture many new compounds and many new chemical transformations have been incidentally discovered, which have thrown great light on chemical theory. From the higher standpoint of pure science, the industry has therefore deservedly won a most exalted position.
With respect to the value of the coal-tar dyes as tinctorial agents, there is a certain amount of misconception which it is desirable to remove. There is a widely-spread idea that these colours are fugitive--that they rub off, that they fade on exposure to light, that they wash out, and, in short, that they are in every way inferior to the old wood or vegetable dyes. These charges are unfounded. One of the best refutations is, that two of the oldest and fastest of natural colouring-matters, viz. alizarin and indigo, are coal-tar products. There are some coal-tar dyes which are not fast to light, and there are many vegetable dyes which are equally fugitive. If there are natural colouring-matters which are fast and which are aesthetically orthodox, these are rivalled by tar-products which fulfil the same conditions. Such dyes as aniline black, alizarin blue, anthracene brown, tartrazine, some of the azo-reds and naphthol green resist the influence of light as well as, if not better than, any natural colouring-matter. The artificial yellow dyes are as a whole faster than the natural yellows. There are at the present time some three hundred coal-tar colouring-matters made, and about one-tenth of that number of natural dyes are in use. Of the latter only ten--let us say 33 per cent.--are really fast. Of the artificial dyes, thirty are extremely fast, and thirty fast enough for all practical requirements, so that the fast natural colours have been largely outnumbered by the artificial ones. If Nature has been beaten, however, this has been rendered possible only by taking advantage of Nature's own resources--by studying the chemical properties of atoms, and giving scope to the play of the internal forces which they inherently possess--
"Yet Nature is made better by no mean, But Nature makes that mean: so, o'er that art, Which, you say, adds to Nature, is an art That Nature makes."
The story told in this chapter is chronologically summarized below--
" Biebrich scarlet, the first secondary azo-colour, introduced by Nietzki.
" Nitroso-sulpho acid of beta-naphthol discovered by the writer; followed in 1883 by naphthol green , and in 1889 by eikonogen .
" Beta-naphthol violet, the first of the oxazines, discovered by the writer; followed in 1881 by gallocyanin.
Add to tbrJar First Page Next Page Prev Page