bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Ancient and Modern Ships Part 1: Wooden Sailing Ships by Holmes George Charles Vincent Sir

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 344 lines and 48664 words, and 7 pages

According to Homer, 1,200 ships were employed, those of the Boeotians having 120 men each, and those of Philoctetes 50 men each. Thucydides also relates that the earliest Hellenic triremes were built at Corinth, and that Ameinocles, a Corinthian naval architect, built four ships for the Samians about 700 B.C.; but triremes did not become common until the time of the Persian War, except in Sicily and Corcyra , in which states considerable numbers were in use a little time before the war broke out.

Fig. 8 is an illustration of a single-banked Greek galley of the date about 500 B.C., taken from an Athenian painted vase now in the British Museum. The vessel was armed with a ram; seventeen oars a-side are shown. There is no space on the vase to show in detail the whole of the mast and rigging, but their presence is indicated by lines.

Fig. 9 is a representation of a Greek bireme of about the date 500 B.C.--that is to say, of the period immediately preceding the Persian War. It is taken from a Greek vase in the

British Museum, which was found at Vulci in Etruria. It is one of the very few representations now in existence of ancient Greek biremes. It gives us far less information than we could wish to have. The vessel has two banks of oars, those of the upper tier passing over the gunwale, and those of the lower passing through oar-ports. Twenty oars are shown by the artist on each side, but this is probably not the exact number used. Unfortunately the rowers of the lower tier are not shown in position. The steering was effected by means of two large oars at the stern, after the manner of those in use in the Egyptian ships previously described. This is proved by another illustration of a bireme on the same vase, in which the steering oars are clearly seen. The vessel had a strongly marked forecastle and a ram fashioned in the shape of a boar's head. It is a curious fact that Herodotus, in his history , mentions that the Samian ships carried beaks, formed to resemble the head of a wild boar, and he relates how the AEginetans beat some Samian colonists in a sea-fight off Crete, and sawed off the boar-head beaks from the captured galleys, and deposited them in a temple in AEgina. This sea-fight took place about the same time that the vases were manufactured, from which Figs. 8 and 9 are copied. There was a single mast with a very large yard carrying a square sail. The stays are not shown, but Homer says that the masts of early Greek vessels were stayed fore and aft.

It is impossible to say whether this vessel was decked. According to Thucydides, the ships which the Athenians built at the instigation of Themistocles, and which they used at Salamis, were not fully decked. That Greek galleys were sometimes without decks is proved by Fig. 10, which is a copy of a fragment of a painting of a Greek galley on an Athenian vase now in the British Museum, of the date of about 550 B.C. It is perfectly obvious, from the human figures in the galley, that there was no deck. Not even the forecastle was covered in. The galleys of Figs. 8 and 9 had, unlike the Phoenician bireme of Fig. 7, no fighting-deck for the use of the soldiers. There was also no protection for the upper-tier rowers, and in this respect they were inferior to the Egyptian ship shown in Fig. 6. It is probable that Athenian ships at Salamis also had no fighting, or flying decks for the use of the soldiers; for, according to Thucydides, Gylippos, when exhorting the Syracusans, nearly sixty years later, in 413 B.C., said, "But to them the employment of troops on deck is a novelty." Against this view, however, it must be stated that there are now in existence at Rome two grotesque pictures of Greek galleys on a painted vase, dating from about 550 B.C., in which the soldiers are clearly depicted standing and fighting upon a flying deck. Moreover, Thucydides, in describing a sea-fight between the Corinthians and the Corcyreans in 432 B.C., mentions that the decks of both fleets were crowded with heavy infantry archers and javelin-men, "for their naval engagements were still of the old clumsy sort." Possibly this last sentence gives us a clue to the explanation of the apparent discrepancy. The Athenians were, as we know, expert tacticians at sea, and adopted the method of ramming hostile ships, instead of lying alongside and leaving the fighting to the troops on board. They may, however, have been forced to revert to the latter method, in order to provide for cases where ramming could not be used; as, for instance, in narrow harbours crowded with shipping, like that of Syracuse.

It is perfectly certain that the Phoenician ships which formed the most important part of the Persian fleet at Salamis carried fighting-decks. We have seen already that they used such decks in the time of Sennacherib, and we have the distinct authority of Herodotus for the statement that they were also employed in the Persian War; for, he relates that Xerxes returned to Asia in a Phoenician ship, and that great danger arose during a storm, the vessel having been top-heavy owing to the deck being crowded with Persian nobles who returned with the king.

Fig. 11, which represents a bireme, taken from an ancient Etruscan imitation of a Greek vase of about 600 B.C., clearly shows soldiers fighting, both on the deck proper and on a raised, or flying, forecastle.

In addition to the triremes, of which not a single illustration of earlier date than the Christian era is known to be in existence, both Greeks and Persians, during the wars in the early part of the fifth century B.C., used fifty-oared ships called penteconters, in which the oars were supposed to have been arranged in one tier. About a century and a half after the battle of Salamis, in 330 B.C., the Athenians commenced to build ships with four banks, and five years later they advanced to five banks. This is proved by the extant inventories of the Athenian dockyards. According to Diodoros, they were in use in the Syracusan fleet in 398 B.C. Diodoros, however, died nearly 350 years after this epoch, and his account must, therefore, be received with caution.

The evidence in favour of the existence of galleys having more than five superimposed banks of oars is very slight.

Alexander the Great is said by most of his biographers to have used ships with five banks of oars; but Quintus Curtius states that, in 323 B.C., the Macedonian king built a fleet of seven-banked galleys on the Euphrates. Quintus Curtius is supposed by the best authorities to have lived five centuries after the time of Alexander, and therefore his account of these ships cannot be accepted without question.

It is also related by Diodoros that there were ships of six and seven banks in the fleet of Demetrios Poliorcetes at a battle off Cyprus in 306 B.C., and that Antigonos, the father of Poliorcetes, had ships of eleven and twelve banks. We have seen, however, that Diodoros died about two and a half centuries after this period. Pliny, who lived from 61 to 115 A.D., increases the number of banks in the ships of the opposing fleets at this battle to twelve and fifteen banks respectively. It is impossible to place any confidence in such statements.

Theophrastus, a botanist who died about 288 B.C., and who was therefore a contemporary of Demetrios, mentions in his history of plants that the king built an eleven-banked ship in Cyprus. This is one of the very few contemporary records we possess of the construction of such ships. The question, however, arises, Can a botanist be accepted as an accurate witness in matters relating to shipbuilding? The further question presents itself, What meaning is intended to be conveyed by the terms which we translate as ships of many banks? This question will be reverted to hereafter.

In one other instance a writer cites a document in which one of these many-banked ships is mentioned as having been in existence during his lifetime. The author in question was Polybios, one of the most painstaking and accurate of the ancient historians, who was born between 214 and 204 B.C., and who quotes a treaty between Rome and Macedon concluded in 197 B.C., in which a Macedonian ship of sixteen banks is once mentioned. This ship was brought to the Tiber thirty years later, according to Plutarch and Pliny, who are supposed to have copied a lost account by Polybios. Both Plutarch and Pliny were born more than two centuries after this event. If the alleged account by Polybios had been preserved, it would have been unimpeachable authority on the subject of this vessel, as this writer, who was, about the period in question, an exile in Italy, was tutor in the family of AEmilius Paulus, the Roman general who brought the ship to the Tiber.

The Romans first became a naval power in their wars with the Carthaginians, when the command of the sea became a necessity of their existence. This was about 256 B.C. At that time they knew nothing whatever of shipbuilding, and their early war-vessels were merely copies of those used by the Carthaginians, and these latter were no doubt of the same general type as the Greek galleys. The first Roman fleet appears to have consisted of quinqueremes.

The third century B.C. is said to have been an era of gigantic ships. Ptolemy Philadelphos and Ptolemy Philopater, who reigned over Egypt during the greater part of that century, are alleged to have built a number of galleys ranging from thirteen up to forty banks. The evidence in this case is derived from two unsatisfactory sources. Athenaeos and Plutarch quote one Callixenos of Rhodes, and Pliny quotes one Philostephanos of Cyrene, but very little is known about either Callixenos or Philostephanos. Fortunately, however, Callixenos gives details about the size of the forty-banker, the length of her longest oars, and the number of her crew, which enables us to gauge his value as an authority, and to pronounce his story to be incredible .

Whatever the arrangement of their oars may have been, these many-banked ships appear to have been large and unmanageable, and they finally went out of fashion in the year 31 B.C., when Augustus defeated the combined fleets of Antony and Cleopatra at the battle of Actium. The vessels which composed the latter fleets were of the many-banked order, while Augustus had adopted the swift, low, and handy galleys of the Liburni, who were a seafaring and piratical people from Illyria on the Adriatic coast. Their vessels were originally single-bankers, but afterwards it is said that two banks were adopted. This statement is borne out by the evidence of Trajan's Column, all the galleys represented on it, with the exception of one, being biremes.

Augustus gained the victory at Actium largely owing to the handiness of his Liburnian galleys, and, in consequence, this type was henceforward adopted for Roman warships, and ships of many banks were no longer built. The very word "trireme" came to signify a warship, without reference to the number of banks of oars.

After the Romans had completed the conquest of the nations bordering on the Mediterranean, naval war ceased for a time, and the fighting navy of Rome declined in importance. It was not till the establishment of the Vandal kingdom in Africa under Genseric that a revival in naval warfare on a large scale took place. No changes in the system of marine architecture are recorded during all these ages. The galley, considerably modified in later times, continued to be the principal type of warship in the Mediterranean till about the sixteenth century of our era.

ANCIENT MERCHANT-SHIPS.

Little accurate information as we possess about the warships of the ancients, we know still less of their merchant-vessels and transports. They were unquestionably much broader, relatively, and fuller than the galleys; for, whereas the length of the latter class was often eight to ten times the beam, the merchant-ships were rarely longer than three or four times their beam. Nothing is known of the nature of Phoenician merchant-vessels. Fig. 12 is an illustration of an Athenian merchant-ship of about 500 B.C. It is taken from the same painted vase as the galley shown on Fig. 9. If the illustration can be relied on, it shows that these early Greek sailing-ships were not only relatively short, but very deep. The forefoot and dead wood aft appear to have been cut away to an extraordinary extent, probably for the purpose of increasing the handiness. The rigging was of the type which was practically universal in ancient ships.

Fig. 13 gives the sheer draught or side elevation, the plan, elevations of the bow and stem, and a midship section of a Roman vessel, which from her proportions and the shape of bow is supposed to have been a merchant-ship. The illustration is taken from a model presented to Greenwich Hospital by Lord Anson. The original model was of white marble, and was found in the Villa Mattei in Rome, in the sixteenth century.

We know from St. Paul's experiences, as described in the Acts of the Apostles, that Mediterranean merchant-ships must often have been of considerable size, and that they were capable of going through very stormy voyages. St. Paul's ship contained a grain cargo, and carried 276 human beings.

In the merchant-ships oars were only used as an auxiliary means of propulsion, the principal reliance being placed on masts and sails. Vessels of widely different sizes were in use, the larger carrying 10,000 talents, or 250 tons of cargo. Sometimes, however, much bigger ships were used. For instance, Pliny mentions a vessel in which the Vatican obelisk and its pedestal, weighing together nearly 500 tons, were brought from Egypt to Italy about the year 50 A.D. It is further stated that this vessel carried an additional cargo of 800 tons of lentils to keep the obelisk from shifting on board.

DETAILS OF THE CONSTRUCTION OF GREEK AND ROMAN GALLEYS.

It is only during the present century that we have learned, with any certainty, what the ancient Greek galleys were like. In the year 1834 A.D. it was discovered that a drain at the Piraeus had been constructed with a number of slabs bearing inscriptions, which, on examination, turned out to be the inventories of the ancient dockyard of the Piraeus. From these inscriptions an account of the Attic triremes has been derived by the German writers Boeckh and Graser. The galleys all appear to have been constructed on much the same model, with interchangeable parts. The dates of the slabs range from 373 to 323 B.C., and the following description must be taken as applying only to galleys built within this period.

The length, exclusive of the beak, or ram, must have been at least 126 ft., the ram having an additional length of 10 ft. The length was, of course, dictated by the maximum number of oars in any one tier, by the space which it was found necessary to leave between each oar, and by the free spaces between the foremost oar and the stem, and the aftermost oar and the stern of the ship. Now, as it appears further on, the maximum number of oars in any tier in a trireme was 62 in the top bank, which gives 31 a side. If we allow only 3 ft. between the oars we must allot at least 90 ft. to the portion of the vessel occupied by the rowers. The free spaces at stem and stern were, according to the representations of those vessels which have come down to us, about 7/24th of the whole; and, if we accept this proportion, the length of a trireme, independently of its beak, would be about 126 ft. 6 in. If the space allotted to each rower be increased, as it may very reasonably be, the total length of the ship would also have to be increased proportionately. Hence it is not surprising that some authorities put the length at over 140 ft. It may be mentioned in corroboration, that the ruins of the Athenian docks at Zea show that they were originally at least 150 ft. long. They were also 19 ft. 5 in. wide. The breadth of a trireme at the water-line, amidships, was about 14 ft., perhaps increasing somewhat higher up, the sides tumbled home above the greatest width. These figures give the width of the hull proper, exclusive of an outrigged gangway, or deck, which, as subsequently explained, was constructed along the sides as a passage for the soldiers and seamen. The draught was from 7 to 8 ft.

In addition to oars, sails were used as a means of propulsion whenever the wind was favourable, but not in action.

The Athenian galleys had, at first, one mast, but afterwards, it is thought, two were used. The mainmast was furnished with a yard and square sail.

The upper deck, which was the fighting-platform previously mentioned, was originally a flying structure, and, perhaps, did not occupy the full width of the vessel amidships. At the bow, however, it was connected by planking with the sides of the ship, so as to form a closed-in space, or forecastle. This forecastle would doubtless have proved of great use in keeping the ship dry during rough weather, and probably suggested ultimately the closed decking of the whole of the ship. There is no record of when this feature, which was general in ancient Egyptian vessels, was introduced into Greek galleys. It was certainly in use in the Roman warships about the commencement of the Christian era, for there is in the Vatican a relief of about the date 50 A.D. from the Temple of Fortune at Praeneste, which represents part of a bireme, in which the rowers are all below a closed deck, on which the soldiers are standing.

In addition to the fighting-deck proper there were the two side platforms, or gangways, already alluded to, which were carried right round the outside of the vessel on about the same level as the benches of the upper tier of rowers. These platforms projected about 18 to 24 in. beyond the sides of the hull, and were supported on brackets. Like the flying deck, these passages were intended for the accommodation of the soldiers and sailors, who could, by means of them, move freely round the vessel without interfering with the rowers. They were frequently fenced in with stout planking on the outside, so as to protect the soldiers. They do not appear to have been used on galleys of the earliest period.

We have no direct evidence as to the dimensions of ships of four and five banks. Polybios tells us that the crew of a Roman quinquereme in the first Carthaginian War, at a battle fought in 256 B.C., numbered 300, in addition to 120 soldiers. Now, the number 300 can be obtained by adding two banks of respectively 64 and 62 rowers to the 172 of the trireme. We may, perhaps, infer that the quinquereme of that time was a little longer than the trireme, and had about 3 ft. more freeboard, this being the additional height required to accommodate two extra banks of oars. Three hundred years later than the above-mentioned date Pliny tells us that this type of galley carried 400 rowers.

The exact arrangement of the oars in the larger classes of galleys has always been a puzzle, and has formed the subject of much controversy amongst modern writers on naval architecture. The vessels were distinguished, according to the numbers of the banks of oars, as uniremes, biremes, triremes, quadriremes, etc., up to ships like the great galley of Ptolemy Philopater, which was said to have had forty banks. Now, the difficulty is to know what is meant by a bank of oars. It was formerly assumed that the term referred to the horizontal tiers of oars placed one above the other; but it can easily be proved, by attempting to draw the galleys with the oars and rowers in place, that it would be very difficult to accommodate as many as five horizontal banks and absolutely impossible to find room for more than seven. Not only would the space within the hull of the ship be totally insufficient for the rowers, but the length of the upper tiers of oars would be so great that they would be unmanageable, and that of the lower tiers so small that they would be inefficient. The details given by ancient writers throw very little light upon this difficult subject. Some authors have stated that there was only one man to each oar, and we now know that this was the case with the smaller classes of vessels, say, up to those provided with three, or four, to five banks of oars; but it is extremely improbable that the oars of the larger classes could have been so worked. The oars of modern Venetian galleys were each manned by five rowers. It is impossible in this work to examine closely into all the rival theories as to what constituted a bank of oars. It seems improbable, for reasons before stated, that any vessel could have had more than five horizontal tiers. It is certain also that, in order to find room for the rowers to work above each other in these tiers, the oar-ports must have been placed, not vertically above each other, but in oblique rows, as represented in Fig. 14. It is considered by Mr. W. S. Lindsay, in his "History of Merchant Shipping and Ancient Commerce," that each of the oblique rows of oars, thus arranged, may have formed the tier referred to in the designation of the class of the vessel, for vessels larger than quinqueremes. If this were so, there would then be no difficulty in conceiving the possibility of constructing galleys with even as many as forty tiers of oars like the huge alleged galley of Ptolemy Philopater. Fig. 15 represents the disposition of the oar-ports according to this theory for an octoreme.

It appears to be certain that the oars were not very advantageously arranged, or proportioned, in the old Greek galleys, or even in the Roman galleys, till the time of the early Caesars, for we read that the average speed of the Athenian triremes was 200 stadia in the day. If the stadium were equal in length to a furlong, and the working day supposed to be limited to ten hours, this would correspond to a speed of only two and a half miles an hour. The lengths of the oars in the Athenian triremes have been already given ; even those of the upper banks were extremely short--only, in fact, about a foot longer than those used in modern 8-oared racing boats. On account of their shortness and the height above the water at which they were worked, the angle which the oars made with the water was very steep and consequently disadvantageous. In the case of the Athenian triremes, this angle must have been about 23.5?. This statement is confirmed by all the paintings and sculptures which have come down to us. It is proved equally by the painting of an Athenian bireme of 500 B.C. shown in Fig. 9, and by the Roman trireme, founded on the sculptures of Trajan's Column of about 110 A.D., shown in Fig. 16. In fact, it is evident that the ancients, before the time of the introduction of the Liburnian galley, did not understand the art of rowing as we do to-day. The celebrated Liburnian galleys, which were first used by the Romans, for war purposes, at the battle of Actium under Augustus Caesar, were said to have had a speed of four times that of the old triremes. The modern galleys used in the Mediterranean in the seventeenth century are said to have occasionally made the passage from Naples to Palermo in seventeen hours. This is equivalent to an average speed of between 11 and 12 miles per hour.

The timber used by the ancient races on the shores of the Mediterranean in the construction of their ships appears to have been chiefly fir and oak; but, in addition to these, many other varieties, such as pitch pine, elm, cedar, chestnut, ilex, or evergreen oak, ash, and alder, and even orange wood, appear to have been tried from time to time. They do not seem to have understood the virtue of using seasoned timber, for we read in ancient history of fleets having been completed ready for sea in incredibly short periods after the felling of the trees. Thus, the Romans are said to have built and equipped a fleet of 220 vessels in 45 days for the purpose of resisting the attacks of Hiero, King of Syracuse. In the second Punic War Scipio put to sea with a fleet which was stated to have been completed in forty days from the time the timber was felled. On the other hand, the ancients believed in all sorts of absurd rules as to the proper day of the moon on which to fell trees for shipbuilding purposes, and also as to the quarter from which the wind should blow, and so forth. Thus, Hesiod states that timber should only be cut on the seventeenth day of the moon's age, because the sap, which is the great cause of early decay, would then be sunk, the moon being on the wane. Others extend the time from the fifteenth to the twenty-third day of the moon, and appeal with confidence to the experience of all artificers to prove that timber cut at any other period becomes rapidly worm-eaten and rotten. Some, again, asserted that if felled on the day of the new moon the timber would be incorruptible, while others prescribed a different quarter from which the wind should blow for every season of the year. Probably on account of the ease with which it was worked, fir stood in high repute as a material for shipbuilding.

The bows of the ancient war galleys were so constructed as to act as rams. The ram was made of hard timber projecting beyond the line of the bow, between it and the forefoot. It was usually made of oak, elm, or ash, even when all the rest of the hull was constructed of soft timber. In later times it was sheathed with, or even made entirely of, bronze. It was often highly ornamented, either with a carved head of a ram or some other animal, as shown in Figs. 8 to 11; sometimes swords or spear-heads were added, as shown in Figs. 19 and 20. A relic of this ancient custom is found to this day in the ornamentation of the prows of the Venetian gondolas. Originally the ram, or rostrum, was visible above the water-line, but it was afterwards found to be far more effective when wholly immersed. In addition to the rams there were side projections, or catheads, above water near the bow. The ram was used for sinking the opposing vessels by penetrating their hulls, and the catheads for shattering their oars when sheering up suddenly alongside. Roman galleys were fitted with castles, or turrets, in which were placed fighting men and various engines of destruction. They were frequently temporary structures, sometimes consisting of little more than a protected platform, mounted on scaffolding, which could be easily taken down and stowed away. The use of these structures was continued till far into the Middle Ages.

ANCIENT SHIPS IN THE SEAS OF NORTHERN EUROPE.

Outside the Mediterranean it is known that some of the northern nations had attained to very considerable skill in the arts of shipbuilding and navigation. Caesar gives a general description of the ships of the Veneti, who occupied the country now known as Brittany, and who had in their hands the carrying trade between Gaul and Britain. As might be expected from the stormy nature of the Atlantic, the Veneti were not able to place any reliance on oars as a means for propulsion. According to Caesar's account, they trusted solely to sails. Their vessels were built entirely of oak of great thickness. He also mentions that the beams were as much as 12 in. in depth. The bottoms of these vessels were very flat, so as to enable them the better to be laid up on the beach. The hulls had considerable sheer, both at the stem and stern. The sails were of dressed hide, and the cables were iron chains. It is evident from this cursory description that the ships of the Veneti were not based upon Mediterranean models, and it is highly probable that they, rather than the oar-propelled galleys, may be regarded as the prototypes of the early sea-going vessels of Northern Europe.

Although the art of ship construction had attained to great importance amongst the Veneti, their neighbours, the Britons, were still very backward in this respect at the time of the first Roman invasion. Caesar states that their vessels were of very slight construction, the framework being made of light timber, over which was stretched a covering, or skin, of strong hides. Sometimes the framework was of wicker.

The ancient Saxons, who were notorious as pirates on the North Sea, made use of boats similar to those of the ancient Britons. At the time of their invasion of Britain, however, their vessels must have been larger and of more solid construction, though we must dismiss, as an obvious absurdity, the statement that the first invading army of 9,000 men was carried to this country in three ships only. It is much more probable that the expedition was embarked in three fleets.

The Saxon kings of England often maintained very considerable fleets for the purpose of protecting the coast from the Danes.

Alfred the Great is generally regarded as the founder of the English Navy. He designed ships which were of a better type and larger size than those of his enemies, the Danes. They were said to have been twice as long as the vessels which they superseded. The Saxon Chronicle says, "They were full twice as long as the others; some had sixty oars, and some had more; they were swifter and steadier, and also higher than the others; they were shaped neither like the Frisian, nor the Danish, but so as it seemed to him they would be most efficient." In 897 Alfred met and defeated a Danish squadron, in all probability with his new ships.

Edgar is stated to have kept at sea no less than 3,600 vessels of various sizes, divided into three fleets, and the old historian William of Malmesbury tells us that this king took an active personal interest in his navy, and that in summer time he would, in turn, embark and cruise with each of the squadrons.

In the seventh and eighth centuries of the Christian era the scene of maritime activity was transferred from the Mediterranean to the North of Europe. The Norsemen, who overran the whole of the European seaboard at one time or another, were the most famous navigators of the period immediately preceding the Middle Ages. Any record connected with their system of ship-construction is necessarily of great interest. The fleets of the Norsemen penetrated into the Mediterranean as far as the imperial city of the Eastern emperors. In the north they discovered and colonized Iceland, and even Greenland; and there are good grounds for believing that an expedition, equipped in Iceland, founded a colony in what are now the New England States five centuries before Columbus discovered the West Indies. Unfortunately, the written descriptions extant of the Norse ships are extremely meagre, and if it had not been for the curious custom of the Norsemen of burying their great chiefs in one of their ships and heaping earth over the entire mass, we should now know nothing for certain of the character of their vessels. Many of these ship-tombs have been discovered in modern times, but it happened in the majority of instances that the character of the earth used was unsuited to their preservation, and most of the woodwork was found to be decayed when the mounds were explored. Fortunately, however, in two instances the vessels were buried in blue clay, which is an excellent preserver of timber, and, thanks to the discovery of these, we have now a tolerably complete knowledge of the smaller classes of vessels used by the Vikings. One of them was discovered, in 1867, at Haugen, but by far the most important was found in 1880, at Gogstad, near Sandefjord, at the entrance of the Fjord of Christiania. Though this vessel is comparatively small, she is, probably, a correct representative of the larger type of ships made use of by the renowned adventurers of the North in their distant expeditions.

Unfortunately, the two extreme ends of the ship have decayed away, so that it is not possible to determine with accuracy what was the appearance of the bow and stern. It is, however, probable, from the direction taken by the planking towards the ends, that the vessel possessed very considerable sheer. As may be seen from the plan, the character of the lines was extremely fine, and it is probable that the boat was capable of high speed. The remains of the ropes which have been discovered prove that they were made from the bark of trees.

This vessel may be considered as a connecting link between the ancient and mediaeval types of ships. Her proportions and scantlings prove that her builders had a large experience of shipbuilding, that they fully understood how to work their material and to adapt it properly to the duty it had to fulfil, and also that they understood the art, which was subsequently lost, to be revived only in modern times, of shaping the underwater portion of the hull so as to reduce the resistance to the passage of the vessel through the water. The only part of the structural design to which any serious exception can be taken is the very slight character of the connection between the top sides and the body of the boat, and even this defect was probably not very serious when we take into account the lightness of the loading, and the fact that it probably consisted chiefly of live cargo, so that there was little dead weight to cause serious straining.

Vessels of the type of the Viking ships were built in Denmark at a very early date. In 1865 three boats were discovered buried in a peat bog in Jutland. Danish antiquaries consider that they were built about the fifth century of our era. The largest is 70 ft. in length and of such an excellent type that boats of somewhat similar form and construction are in universal use to this day all round the coasts of Norway. Such an instance of persistency in type is without parallel in the history of shipbuilding, and is a wonderful proof of the skill of the Norsemen in designing and building vessels. The boat in question is clinker-built, the planks having the same peculiarities as those of the Viking ship just described. It is of the same shape at both ends, and has great sheer at both stem and stern. The rowlocks, of which there are thirty, prove that the vessel was intended to be rowed in either direction. This also is a peculiarity of the modern Norwegian rowboat. The steering was effected by means of a large oar, or paddle. There is no trace of a mast, nor of any fitting to receive one; nor was the vessel decked. The internal framing was admirably contrived. In fact, it would be difficult, even at the present time, to find a vessel in which lightness and strength were better combined than in this fifteen-hundred-year-old specimen of the shipbuilder's art.

MEDIAEVAL SHIPS.

It may here be mentioned that galleys continued to be used, along with sailing ships, in the various European navies till the seventeenth century.

In the reign of Richard Coeur de Lion a great impetus was given to shipbuilding and to maritime adventure in this country by the expedition which the king undertook to the Holy Land. A fleet of about 110 vessels, according to Peter Langtoft, sailed from Dartmouth in April, 1190 A.D. It was reinforced considerably in the Mediterranean; for, according to Matthew Paris, Richard was accompanied on his voyage to Palestine by 13 buccas, 100 "ships of burthen," and 50 triremes, and according to Vinesauf, the fleet consisted of about 230 vessels. The buccas, or busses, or dromons, were ships of the largest size, with triple sails. There were two sorts of galleys; some were propelled by oars alone, and others by oars and sails: the latter were the larger, and, according to Matthew Paris, sometimes carried 60 men in armour, besides 104 rowers and the sailors. He also states that some of them had triple banks of oars like the ancient galleys; but, according to Vinesauf, the majority had not more than two banks of oars, and carried the traditional flying deck above the rowers for the use of the soldiers; they were low in the water compared to the sailing-ships, and they carried beaks, or rams, which, as narrated subsequently, they used to some purpose.

The larger type of sailing-ships carried a captain and fifteen sailors, forty knights with their horses, an equal number of men-at-arms, fourteen servants, and complete stores for twelve months. There were, moreover, three much larger vessels in the fleet which carried double the complement mentioned above.

As an instance of the very large size to which vessels occasionally attained in those days in the Levant, we may refer to a Saracen vessel which was attacked by Richard's fleet near Beirut in Syria, in 1191. It was described by many of the old chroniclers. This ship had three masts, and is alleged to have had 1,500 men on board at the time of the fight. The attack was carried out with great difficulty, on account of the towering height of the sides of the Saracen vessel, and it was not till ramming tactics were tried by the galleys charging in line abreast, that her hull was stove in, in several places, and she went down with nearly all hands, only thirty-five, or, according to other accounts forty-six, having been saved.

Add to tbrJar First Page Next Page Prev Page

 

Back to top